DEEP SEA MOLLUSCA FROM WEST OF CAPE POINT, SOUTH AFRICA

By

K. H. Barnard
South African Museum, Cape Town

[Accepted July 1962]
(With in figures in the text)

Contents

			PAGE	
Introduction	.	.	.	407
List of species	.	.	.	408
Species found at each station	.	4 I 3		
Descriptions and notes	.	.	4 I 8	
Summary	45 I
Acknowledgments	.	.	.	45 I
References	.	.	.	45 I

Introduction

The material described here was obtained by Dr. F. H. Talbot of the South African Museum, on board the r.s. Africana $I I$ of the Division of Sea Fisheries in August and December 1959, at twelve stations off Cape Point and west of the Cape Peninsula. It comprises approximately 590 specimens, of which more than half are Prosobranch Gastropods. The number of species in the groups is as follows: Gastropods 43; Heteropods 2; Pteropods 5; Tectibranchs 2; Nudibranch I ; Solenogastres 2-3; Scaphopods 6; Cephalopods 3-4; Lamellibranchs in ; Brachipod i. Total: about 78.

One Cephalopod is here recorded. Two or three species of Octopods were also obtained, but these have not yet been identified.

An attempt has been made to identify the Solenogastres, but owing to technical difficulties in section-cutting, the attempt has been temporarily postponed. There appear to be two, possibly three, species.

The material contains several species obtained many years ago by the Cape Government trawler s.s. Pieter Faure, under the direction of the late Dr. J. D. F. Gilchrist. The Africana II, however, has sampled depths greater than those worked by the Pieter Faure. Therefore, as might have been expected, several new records and new species have been obtained.

Most of the new forms belong to the family Turritidae (Gastropoda); the Pieter Faure also collected more representatives of this family than of any other; and similar results have been obtained in other regions by other expeditions.

The most interesting discovery has been the Volute Guivillea alabastrina (Watson), originally taken by the Challenger between Marion Island and the Crozets; and later by the Scotia near the South Orkneys.

Some of the species have already been recorded in Part III of the author's 'Contributions to . . . fauna of South African Marine Mollusca', and in the Fournal of Conchology (see list of titles).

The whole collection made by Dr. Talbot and submitted to me for report is now deposited in the South African Museum and is catalogued with South African Museum registration numbers.

The Lamont Geological Observatory research vessel Vema obtained abyssal molluscs from stations off the west coast of South Africa and south-west of Cape Town (St. 14, 16, 18, 51, 52, 53), which have been reported on by Clarke (ig6r). This author seems to have been misinformed as to the true position of the Agulhas Basin, and has erroneously localized Stations 51 and 52 (1,000 and 800 miles respectively south-west of Cape Town) in the 'Agulhas' Basin. The naming of two new species from Station 5I as 'agulhasae' is also very misleading.

List of Spegies

GASTROPODS

Station
 No.

Terebra sp. A322 I dead; more material wanted
Surcula scalaria Brnrd. 1958 Aı89 3 dead
Aigo 2 dead
Argi 2 living
Arg2 I living
Ar93 I living, I dead (fresh)
Clavatula lobatopsis n. sp. $\begin{aligned} & \text { A315 } 2 \text { living }\end{aligned}$
A3I6 I living
A317 II living
A318 2 living
A319 I dead
A322 6 living, 3 dead
Moniliopsis psilarosis n. sp. , . .. $\left\{\begin{array}{l}\mathrm{A}_{3} 16 \text { I living, } \mathrm{I} \text { dead } \\ \mathrm{A}_{322} 3 \text { dead }\end{array}\right.$
Typhlomangelia(?) polythele n. sp. .. A3172 living
Cythara(?) glaucocreas n. sp. A3I5 I dead (ex anemone) $^{\text {A }}$
A3I8 I living, 2 dead (ex anemone)
Aigi 5 living
Aig2 3 dead
Cythara(?) dagama n. sp. A $_{3} 5$ I dead
A317 5 dead
A322 I living, I juv. dead

Trophon cf. droueti Dautzenberg
Columbarium rotundum Brnrd. 1959
Columbarium angulare Brnrd. 1959
Thallassocyon bonus Brnrd. I96o..

Oöcorys watsoni Locard .

Polynices cleistopsila Brnrd. 1963
. A322 3 dead
.. Aı89 6 living, 6 dead
.. A3I8 2 living, 4 dead
 Aigo 2 dead Aig2 2 living, I dead Aig3 I and 2 juv. living A316 I dead (large) A317 2 dead A318 I living, 2 dead A319 I living, 18 dead A322 2 living, 3 dead Aı 89 I living
Aigo i dead
Aigi 3 living
Aig2 2 dead
A317 I living, 2 dead
A319 6 dead
A322 3 dead
Falsilunatia pseudopsila Brnrd. 1963
Turbonilla sp. (cf. kraussi) ..
Cerithiella taylori Brnrd. I963
Lamellaria capensis Bergh A316 2 living
Scala bonae-spei Brnrd. 1963 $\left\{\begin{array}{l}\text { Ar93 } 2 \text { living } \\ \text { A } 26 \text { I living }\end{array}\right.$
Abyssochrysos melanioides Tomlin
Calliotropis metallica (W.-M. \& A.)
.. A315 i living
.. Aı89 I dead; more material wanted
.. Aigo i dead
$\cdots\left\{\begin{array}{l}\text { Argo I dead } \\ \text { A3r9 } 2 \text { living, } 5 \text { dead }\end{array}\right.$
.$\left\{\begin{array}{l}\text { Argo i living, I dead } \\ \text { A322 } \text { I living }\end{array}\right.$

Calliotropis pompe n. sp. $\left\{\begin{array}{l}A_{3} 16 \text { I dead } \\ A_{31} 7 \text { I living, I dead }\end{array}\right.$
Basilissa gelida n. sp. Aıgo i living
Calliostoma glaucophaos n. sp. A318 2 living
? Solariella Aigo i dead; more material wanted
heteropods
Atlanta sp. Aig3 i dead
Cardiapoda richardi Vayss Aigo i living

PTEROPODS

Cavolinia limbata D'Orb... Aigo i dead
Cavolinia ? globulosa A315 2 dead
Diacria trispinosa (Lesueur) $\left\{\begin{array}{l}\text { A190 } 1 \text { dead } \\ A_{322} 3 \text { dead }\end{array}\right.$
Herse (Cuvieria) columnella (Rang) .. A322 2 dead

TEGTIBRANGHS

Gastropteron sp. $\left\{\begin{array}{l}\text { A }_{3} 18 \text { I living } \\ \mathrm{A}_{3} 19 \text { I living }\end{array}\right.$
nUdibranchs
Doridoxa benthalis n. sp. A316 i
SOLENOGASTRES

SGAPHOPODS
Dentalium capense Tomlin Ai89 I living, 2 dead

CEPHALOPODS
Eggs $\left\{\begin{array}{l}A_{1} 90 \\ A_{3} 8\end{array}\right.$
Octopus sp. $\begin{gathered}\text { º Ai89 I }\end{gathered}$
Octopus sp. juv. Aig2 I
Octopus sp. A3I8 I
Octopus sp. large A319 I
Octopus sp. small A3I9 I
Leachia cyclura Lesueur Aig2 I

LAMELLIBRANCHS

Nucula (Pronucula) benguelana Clarke .. A322 i living
Malletia estheriopsis n.sp. $\left\{\begin{array}{l}\text { A317 } 2 \text { living } \\ \text { A319 } 3 \text { living } \\ \text { A32 I I living } \\ A_{322} 2 \text { living }\end{array}\right.$

Leda parsimonia n. sp. A317 I living
Leda macella n. sp. $\left\{\begin{array}{l}\text { Argo } 1 \text { living } \\ \text { Arg2 I living } \\ \text { A3I7 I living } \\ \text { A319 a lot living }\end{array}\right.$
? Sarepta sp. A322 I valve

Limopsis cf. straminea Smith	CAigo 3 living
	Aigi If living
	Aig2 12 living
	$\left\{\begin{array}{l}\text { Ar93 } \\ \text { ro living }\end{array}\right.$
	A3r5 3 living
	A3r7 6 living, 5 valves
	A319 34 living, 4 valves
	A322 2 living, I valve
Thyasira investigatoris (Smith)	Ar89 i valve
	Ar89 I living, 2 dead
Abra longicallus (Scacchi)	A322 I living
Halicardia flexuosa (V. \& S.)	Ar89 I living
Cuspidaria sp. (cf. meridionalis)	Ar89 i living
Cuspidaria sp. (cf. maxima)	$\left\{\begin{array}{l} \mathrm{A}_{3} \text { I } 5 \text { I valve, I broken valve } \\ \mathrm{A}_{322} \text { I broken valve } \end{array}\right.$
BRACHIOPODS	
Terebratula sp .	$\mathrm{A}_{3} 62{ }_{2}$ living

Species Found at Each Station

$33^{\circ} 50^{\prime}$ S., $17^{\circ} 2 I^{\prime}$ E., 6oo fathoms. (Station number Ai89)* Surcula scalaria Brnrd. 1958
Mangilia sp. new to fauna-list
Daphnella verecunda n. sp.; Type
Gymnobela sp. new to fauna-list
Charitodoron pasithea Tomlin
Trophon acceptans Brnrd. 959
Columbarium rotundum Brnrd. 1959
Polynices cleistopsila Brnrd. 1963 n. sp.
Turbonilla sp. more material wanted
Cavolinia tridentata (Forskal)
Dentalium capense Tomlin
Dentalium sp. (18-22 ribs) new to fauna-list
Cadulus promontorii Brnrd. MS. n. sp.; Types
Octopus sp. đ
Halicardia flexuosa (V. \& S.)
Cryptodon investigatoris Smith
Abra longicallus (Scacchi) new to fauna-list
Cuspidaria sp. (cf. meridionalis) new to fauna-list
$33^{\circ} 26^{\prime}$ S., $16^{\circ} 33^{\prime}$ E., $1,24^{-1}$, 300 fathoms (Aigo)
Clavatula lobatopsis
n.sp.

Charitodoron thalia Tomlin

[^0]Nux alabaster Brnrd. ig6o n. g., n. sp.; Type
Thalassocyon bonus Brnrd. 1960 n. g., n. sp.
Oöcorys watsoni Locard
Polynices cleistopsila Brnrd. 1963 n. sp.
Cerithiella taylori Brnrd. 1963 n. sp.; Type
Abyssochrysos melanioides Tomlin
Calliotropis metallica (W-M. \& A.)
Basilissa gelida n. sp.; Type
? Solariella more material wanted
Cavolinia tridentata (Forskal)
Cavolinia limbata D'Orb.
Diacria trispinosa (Lesueur)
Cardiapoda richardi Vayss. new to fauna-list
Dentalium eualdes n. sp.
Dentalium sp. (9 ribs) new to fauna-list
Cephalopod eggs
Limopsis sp. cf. straminea Smith new to fauna-list
Leda macella n. sp.
$33^{\circ} 36^{\prime}$ S., 6° I5 5^{\prime} E., $1,520-1,570$ fathoms (Ai91)
Clavatula lobatopsis n. sp.; Types
Cythara(?) dagama n. sp.; Types
Typhlosyrinx pyrropelex n. sp.; Types (of juvenile)
Charitodoron thalia Tomlin
Trophon acceptans Brnrd. 1959
Polynices cleistopsila Brnrd. 1963 n. sp.
Dentalium eualdes n. sp.; Types
Solenogastres new to fauna-list
Limopsis sp. cf. straminea Smith new to fauna-list
$33^{\circ} 45 \frac{1^{\prime}}{}{ }^{\prime}$ S., $16^{\circ} 23 \frac{1}{2}^{\prime}$ E., $\mathrm{I}, 48 \mathrm{o}$ fathoms (Ai92)
Clavatula lobatopsis n. sp.
Cythara(?) dagama n. sp.
Charitodoron thalia Tomlin
Trophon acceptans Brnrd. 959
Oöcorys watsoni Locard
Polynices cleistopsila Brnrd. 1963 n. sp.
Scaphander puncto-striatus Mighels
Dentalium eualdes n. sp.
Octopus sp. juv.
Leachia cyclura Lesueur new to fauna-list
Limopsis sp. cf. straminea Smith new to fauna-list
Leda macella n. sp.
$33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $\mathrm{I}, 500$ fathoms (A193)
Clavatula lobatopsis n. sp.
Cythara(?) glaucocreas n. sp.

Clavatula lobatopsis, n. sp.
Typhlosyrinx pyrropelex n. sp.
Turritid. Gen. ? new to fauna-list
Guivillea alabastrina (Watson)
Trophon acceptans Brnrd. 1959
Oöcorys watsoni Locard
Polynices cleistopsila Brnrd. 1963 n. sp.
Abyssochrysos melanioides Tomlin
Cavolinia tridentata (Forskal)
Scaphander puncto-striatus Mighels
Gastropteron sp. new to fauna-list
Dentalium eualdes
Octopus sp. (large)
Octopus sp. (small)
Limopsis sp. cf. straminea Smith new to fauna-list
Leda macella n. sp.; Types
Malletia estheriopsis n. sp.

Malletia estheriopsis n. sp.
$34^{\circ} 36^{\prime}$ S., 17° oo $^{\prime}$ E., $1,500-1,760$ fathoms (A322)
Terebra sp. new to fauna-list
Clavatula lobatopsis n. sp.
Moniliopsis psilarosis n. sp.
Cythara(?) dagama n. sp.
Typhlosyrinx pyrropelex n. sp.
Typhlosyrinx chrysopelex n. sp.; Type
Cancellaria euthymei Brnrd. ig6o n. sp.; Type
Guivillea alabastrina (Watson) new to fauna-list
Charitodoron pasithea Tomlin
Charitodoron thalia Tomlin
Neptunea bonae-spei. n. sp.
Prosipho torquatus n. sp.
Pyrene cf. profundi Dall new to fauna-list
Trophon acceptans Brnrd. I959
Trophon cf. droueti Dautzenberg new to fauna-list
Oöcorys watsoni Locard
Calliotropis metallica (W.-M. \& A.)
Cavolinia tridentata (Forskal)
Diacria trispinosa (Lesueur)
Herse (Cuvieria) columnella (Rang)
Scaphander puncto-striatus Mighels
Dentalium eualdes n. sp.
Dentalium lardum n. sp.

Dentalium sp. (9 ribs) new to fauna-list
Abra longicallus (Scacchi) new to fauna-list
Limopsis sp. cf. straminea Smith new to fauna-list
Cuspidaria sp. cf. maxima new to fauna-list
Nucula (Pronucula) benguelana Clarke new to fauna-list
? Sarepta sp. new to fauna-list
Malletia estheriopsis n. sp.

Descriptions and Notes

GASTROPODA

Terebridae

Terebra sp.
(Fig. I a)
Protoconch 2 ($2 \frac{1}{2}$) whorls, last whorl bulbous, smooth. Postnatal whorls 7. Axial plicae 14^{-15} on 2nd whorl, increasing to 18 on last whorl, straight, slightly protractive; intervening grooves shallow. Slight indication of a subsutural spiral groove, and $4-5$ very faint spiral lirae in the axial grooves. Base with growthlines and very faint spiral striae. $6.5 \times 2 \mathrm{~mm}$. Very pale corneous, protoconch opaque white.
$34^{\circ} 36^{\prime}$ S., 7° oo' E., $1,500-1,760$ fathoms, I dead (S. Afr. Mus. A9854, F. H. Talbot coll.).

Remarks. As further and better specimens may be obtained later, no specific name is attached to this specimen.

Turritidae

Subfam. Turrinae
[Turris lobata]

In 1958 I united Pieter Faure specimens from Cape Point with specimens from Cape Natal (Durban)-East London under the specific name lobata Sow., and transferred it to the genus Turris. The new material raises doubts as to the conspecificity of the shells, and the generic position.

Comparison of the 7 additional specimens with the previous material shows that the Cape Point shells can be separated on conchological characters from those of the Cape Natal-East London area, though the differences are subtle (slightly exaggerated in the figures herewith).

From the Pieter Faure material two radulae were obtained, one from an East London shell and one from a Cape Point shell, both of them extracted from poorly preserved animals. They seemed to show a slight difference in the shape of the lateral plate. On re-examination, and comparison with 4 radulae
from the new material, the difference appears to be due merely to the slightly different position in which the plates are lying in the mounted preparation.

A more important point, however, is that the 4 additional radulae show distinctly the presence of a central plate and of an accessory wing-like appendage, albeit both are very delicate.

Fig. i. a, Terebra sp. Apex and base, with cross-section of whorl. b, Daphnella (?) bitrudis n. sp.

These Cape Point shells must therefore be placed in Clavatula. Possibly when more material is obtained from the Natal-East London area, it will show that lobata has been incorrectly transferred to Turris; but for the present I retain it in Turris.

> Turris lobata (Sow.)
(Fig. 2 b)
Turris lobata (Sow.), [partim] Barnard, 1958, p. 107, figs. 3 i, 6 profile.
To the description should be added: upper margin of whorl straight, suture visible; the sharp keel continuous, without any trace of nodules; the mid-whorl nodules always rounded, though they may be divided by a slight sulcus.

In my description the number of midwhorl tubercles was not given. Sowerby's original description gave i3 on the penultimate whorl, and his figure seems to confirm this. There is, however, a possibility that ' 13 ' was a misprint for 18, because a lobate specimen, labelled by Sowerby, has i3 on the 3 rd whorl, 18 on the 9 th and 22 on the ioth; other specimens agree, none having less than i6 tubercles on the 8th whorl.

Natal and East London area, 440 and 310 fathoms (S. Afr. Mus. Ai673, Ai674, P.F. coll.).

The remarks in the above reference on the formation of the lobe on the outer lip apply to lobata (Sow.).

There is one dead shell from the Cape Point area, $380-475$ fathoms (S. Afr. Mus. Ai675, P.F. coll.), however, which seems referable to lobata. Although damaged several times and repaired by the animal, and corroded, nevertheless it shows the diagnostic features of lobata, not those of the other Cape Point shells from much greater depths.

Clavatula lobatopsis n. sp.
(Fig. 2 a)
Turris lobata (Sow.), [partim] Barnard, 1958, p. 107, fig. 3 j.
Extremely like Turris lobata but upper margin of whorl undulate, and slightly raised so that the actual suture is scarcely or only partly visible in lateral view; instead of the sharp keel in lobata there is a blunt lira with small nodules, corresponding in number with those in the mid-whorl series, often divided by a slight sulcus; between this lira and the mid-whorl nodules there may be 2-3 feeble lirae, or none at all; the mid-whorl nodules are sharper than in lobata, more tubercular than nodular, and they may be divided by a faint sulcus; on the last whorl (or last half thereof) in the larger shells the tubercles

Fig. 2. a, Clavatula lobatopsis n. sp. Sculpture for comparison with b. b, Turris lobata (Sow.). Sculpture. c, Typhlosyrinx pyrropelex n. sp. Protoconch and base; radula tooth. d, Cythara (?) glaucocreas n. sp. e, Daphnella (?) verecunda n. sp. With radula tooth. Apex of latter further enlarged. f, Mangilia (?) sp. g, Cythara (?) dagama n. sp. h, two radula teeth.
tend to disappear, leaving only a continuous well-marked lira (or costa) at the lip sinus.

Lirae below the mid-whorl girdle as in lobata, but with no tendency to become costate and form a lobe on the outer lip; the lira next below the midwhorl girdle may have small nodules.

Number of midwhorl tubercles 13-14 on 3rd whorl, increasing to 21-24 on 9 th whorl. Towards the end of the last whorl the tubercles often tend to be feeble and irregular.

Among the specimens from Station A317 (S. Afr. Mus. A98oo) was one with 12 midwhorl tubercles on the 3rd whorl, increasing to 14 on the last (8th) whorl. This can be regarded only as a casual variation.

Up to $40 \times 14 \mathrm{~mm}$. and $39 \times 16 \mathrm{~mm}$. (apices corroded).
Operculum oval, nucleus apical.
Animal pale. Eyes absent, or sometimes indicated by a minute brown or black speck. Radula with c. 70 rows, central plate narrow, acicular, extremely delicate, lateral plate with accessory appendage.

Cape Point NE. \times E. $\frac{1}{4}$ E. 46 miles, 900 fathoms, I living; N. 70° E. 40 miles, 800 fathoms, 2 dead; NE. \times E. $\frac{1}{4}$ E. 40 miles, $800-900$ fathoms, I living, 3 dead (S. Afr. Mus. Ai676-Ai68i, P.F. coll.).
$33^{\circ} 26^{\prime}$ S., $16^{\circ} 33^{\prime}$ E., 1,300 fathoms, 2 dead; $33^{\circ} 36^{\prime}$ S., 16° i5 5^{\prime} E.,
 I dead; $33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I , 500 fathoms, I living, I dead (fresh); $34^{\circ} 37^{\prime}$ S., ${ }^{1} 7^{\circ}$ o3 ${ }^{\prime}$ E., $\mathrm{I}, 580-\mathrm{I}, 620$ fathoms, 2 living; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $\mathrm{I}, 480-\mathrm{r}, 660$ fathoms, II living; $33^{\circ} 52^{\prime}$ S., $16^{\circ} 5 \mathrm{I}^{\prime}$ E., I, $380-\mathrm{I}, 520$ fathoms; 2 living; $34^{\circ} 05^{\prime}$ S., $16^{\circ} 5^{\prime}$ E., $\mathrm{I}, 470-\mathrm{I}, 490$ fathoms, I dead; $34^{\circ} 26^{\prime}$ S., 17° oo' E., 1,500 fathoms, 6 living, 3 dead (S. Afr. Mus. A9712, A9730 (Types), A9740, A9752, A9771, A980o, A9820, A9838, A9855; F. H. Talbot coll.).

Surcula scalaria Brnrd.

Surcula scalaria, Barnard, 1958, p. 146, fig. 22 d .
Like the Pieter Faure specimens, the present shells are dead; the generic position therefore remains uncertain.
$33^{\circ} 50^{\prime}$ S., $17^{\circ} 2$ I $^{\prime}$ E., 600 fathoms, 3 dead (S. Afr. Mus. Ag695, F. H. Talbot coll.).

Subfam. Brachytominae

Moniliopsis psilarosis n. sp.
(Fig. 4 a)
Protoconch and ? 2 whorls missing. Remaining postnatal whorls 6. First 3 whorls (probably the $3^{\text {rd-5th) distinctly but not strongly shouldered, profile }}$ of following whorls evenly convex. Oblique, protractive axial riblets i7-18 on first 2 whorls, $18-19$ on 3rd whorl, forming small knobs at the shoulder, petering out below and scarcely reaching suture; becoming evanescent and obsolete on following whorls; crossed by impressed spiral striae 4 on first 2
whorls, 4-5 on 3 rd, increasing to $8-9$ on 4 th, and c. 13 on last 2 whorls; sometimes $2-3$ fine striae above the shoulder on the sulcus. Base with c. 24 (main and interpolated) spiral striae. Sulcus feebly concave, lip sinus moderately deep. Canal rather short and narrow. $47 \times 16 \mathrm{~mm}$. Operculum narrow oval, i $3 \times 5 \mathrm{~mm}$. Drab or brownish, columella and interior of aperture dull pinkish; operculum amber.

Animal pale; eyes at base of short tentacles. Radula with I 5 pairs of rather elongate, unbarbed teeth.
$34^{\circ} 42^{\prime}$ S., $16^{\circ} 54^{\prime}$ E., $1,75^{-1}, 780$ fathoms, 1 living, I dead (fresh); $34^{\circ} 36^{\prime}$ S., 17° oo' E., I,500-1,760 fathoms, 3 dead (worn and corroded) (S. Afr. Mus. A9789 (Types) and A9856; F. H. Talbot coll.).

Remarks. Seems to fit best into the genus Moniliopsis. The sculpture on the later whorls resembles a bare ploughed field.

The smallest worn specimen has lost the protoconch, but retains the first 2 postnatal whorls (corroded); the full complement of postnatal whorls would appear to be 8 . The two largest specimens, corroded and comprising $4^{\text {th }}-8$ th whorls, measure $51.5 \times 19 \mathrm{~mm}$. I have seen a larger one, comprising 3th-8th whorls, measuring $56 \times 20 \mathrm{~mm}$. (in coll. Fisheries Survey).

Typhlomangelia (?) polythele n . sp.

(Fig. $3 e, f$)
Protoconch and ? 2 whorls corroded. Postnatal whorls $4 \frac{1}{2}$; profile angularly shouldered a little above middle of whorl. Small peripheral knobs on the shoulder, c. 20 on 2nd whorl, c. 23 on 3rd, c. 26 on last whorl, evanescent towards outer lip, not continued below shoulder (or only very slightly); low flat spiral lirae $3-4$ on ist whorl, 4-5 on 2nd, 5^{-6} on 3 rd, $7-8$ on last whorl; 8-9 additional lirae on base, plus about the same number of finer lirae on rostrum. Sulcus scarcely concave, with a keel forming a distinct cingulum below the suture. Growth-lines distinct, especially on sulcus where they are subpliculose. Lip sinus deep, semicircular. $13 \times 5.5 \mathrm{~mm}$. Operculum oval, nucleus apical. White, operculum amber.

Animal pale. No eyes. Radula with 22 pairs of dagger-like, unbarbed teeth.
$33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $\mathrm{I}, 480-\mathrm{r}, 66 \mathrm{o}$ fathoms, 2 living (S. Afr. Mus. Ag8o2, F. H. Talbot coll.).

Remarks. Placed provisionally in Typhlomangeiia although the radula teeth are not elongate as in nivalis (see Sars, 1878, pl. ix, fig. io).

Subfam. Cytharinae

Cythara (?) glaucocreas n. sp.
(Fig. $2 d$)
Protoconch corroded. Postnatal whorls 6, apical whorls more or less corroded; profile of whorls moderately convex, shoulder distinct, base rather
ventricose. Oblique axial ribs on penultimate and ultimate whorls 26-30, from shoulder to suture below, more or less traceable on base; spiral lirae 7-8 or 9 on sulcus; ribs crossed by 8 -10 spiral lirae below shoulder, c. 20-24 on base (main and intermediaries). Growth-lines distinct across sulcus, often forming pliculae, nearly straight on upper half, curved when nearing the shoulder. Columella curved, canal wide, very short. $25^{\circ} 5 \times 1 \mathrm{I} \cdot 5 \mathrm{~mm}$. and $21 \times$ II mm. No operculum. White.

Animal greenish, no eyes, Radula with 21 pairs of short dagger-like, unbarbed teeth (similar to those of D. verecunda, see fig. $2 e$).
$33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., 1,500 fathoms, 2 living; $34^{\circ} 37^{\prime}$ S., 17° o3 ${ }^{\prime}$ E., I,580-I,620 fathoms, I dead (extracted from an anemone); $33^{\circ} 52^{\prime}$ S., $16^{\circ} 5 I^{\prime}$ E., $1,380-1,520$ fathoms, I living (Type) and 2 dead (S. Afr. Mus. A9753, A9773, A9821 (Type), A9824; F. H. Talbot coll.).

Remarks. Belongs to one of the Cytharine genera and is provisionally placed in Cythara.

Cythara (?) dagama n. sp.

(Fig. $2 g, h$)
Protoconch corroded. Profile of whorls convex, shoulder not prominent owing to corrosion, except in the smallest (6 -whorled) shell. Postnatal whorls 8. Oblique axial ribs 14 on 3 rd whorl, 16 on 4 th, $16-17$ on 5 th, 19 on 6 th, 20-22 on 7 th, but becoming obscure towards end of whorl, ribs on 8th whorl (only one shell) uncountable owing to corrosion, from shoulder to suture below, evanescent on base; 5-7 spiral lirae on sulcus (chiefly on lower part), obscure on later whorls; ribs crossed by $6-7$ lirae between shoulder and suture on 4 th and 5 th whorls, $7-8$ on 6 th, $8-9$ (io) on 7 th whorl (? io-II on 8 th whorl, corroded), I2-I5 on base, lirae regular, without intermediaries except one or two on base. Growth-lines forming a nearly even curve on the sulcus, slightly pliculose on earlier whorls. Columella curved, canal short, moderately wide. $38 \times \mathrm{I} 6.5 \mathrm{~mm} . ; 34 \times \mathrm{I} 5 \mathrm{~mm} . ; 30 \times \mathrm{I} 3 \mathrm{~mm} . ; 23 \times \mathrm{II} \mathrm{mm}$. White. No operculum.

Animal pale. Tentacles short, no eyes. Radula with 20 pairs of dagger-like teeth, proximally not divided, a short process on inner margin slightly nearer to base than to apex, distally expanded with short lateral tangs, but not barbed.
$33^{\circ} 36^{\prime}$ S., I 6° I 5^{\prime} E., I, $5^{20-1,570}$ fathoms, 5 living (Types); $33^{\circ} 45^{\frac{1}{2}}$ S., $16^{\circ} 233^{\frac{1}{2}}{ }^{\prime}$ E., I, 480 fathoms, 3 dead; $34^{\circ} 37^{\prime}$ S., $17^{\circ} 03^{\prime}$ E., $\mathrm{I}, 580-1,620$ fathoms, I dead; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $1,480-1,660$ fathoms, 5 dead, corroded; 34° $3^{6^{\prime}} \mathrm{S} ., 17^{\circ} 00^{\prime}$ E., $\mathrm{I}, 5^{00}-\mathrm{I}, 760$ fathoms, I living, I juv. dead (S. Afr. Mus. A973I (Types), A974i, A9772, A9806, A986o; F. H. Talbot coll.).

Typhlosyrinx pyrropelex n. sp.
(Fig. $2 c$)
Pleurotoma (Surcula) dissimilis (non Watson). Barnard, 1958, p. 147, fig. 23 a (protoconch).
Shell smooth, polished. Protoconch $3 \frac{1}{2}-4$ whorls, last 2 or 3 whorls with regular oblique (protractive) pliculae, becoming slightly sigmoid near junction
with ist postnatal whorl. Postnatal whorls $6 \frac{1}{2}$ (7); profile convex, with slight shoulder. Growth-lines strongly sigmoid, irregularly pliculose near the suture, becoming strongly protractive (nearly horizontal) on the shoulder, and forming in some specimens obscure rounded axial ribs below shoulder on 3 rd and $4^{\text {th }}$ whorls, c. 14 on 4 th whorl, best seen as marginal undulations in apical view. Fine indistinct spiral striae below shoulder, $c .5^{-6}$ on 2 nd whorl, 7^{-8} on 3 rd, $8-9$ on 4 th, increasing to $c .25$ on 7 th whorl, on base $25-30$ on 4 th whorl, $50-66$ on 7 th. Juveniles: up to $22.5 \times 9 \mathrm{~mm}$. (4 whorls). Creamy-white, glossy, protoconch fulvous brown. No operculum.

Animal pale; eyes represented by a minute pigment speck or absent. Radula (juveniles) with 25-30 pairs of slender doubly-barbed teeth, with a projecting knob proximally.

Cape Point N. 77° E. $650-700$ fathoms, 2 dead; NE. \times E. $\frac{1}{2}$ E. 43 miles, 900 fathoms, 2 dead; NE. \times E. $\frac{3}{4}$ E. 38 miles, $750-800$ fathoms, I dead (S. Afr. Mus. (Types) Ai643, Ai644, Ai645; P.F. coll.).
$33^{\circ} 3^{\prime}$ S., 16° I 5^{\prime} E., I,520-1,570 fathoms, I living, I dead; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $1,480-1,660$ fathoms, 6 dead; $33^{\circ} 52^{\prime}$ S., $16^{\circ} 51^{\prime}$ E., $1,380-1,520$ fathoms, 2 dead; $34^{\circ} 05^{\prime}$ S., $16^{\circ} 58^{\prime}$ E., I, $470-\mathrm{I}, 490$ fathoms, I dead; $34^{\circ} 36^{\prime}$ S., ${ }^{1} 7^{\circ}{ }^{\circ}$ oo' E., $1,500-\mathrm{r}, 760$ fathoms, 3 living (S. Afr. Mus. A9732, A9805, A9823, A9839, A9858; F. H. Talbot coll.).

Remarks. The radula corresponds with that of T. vepallida von Martens (see: Thiele, 1903, pl. 9, fig. 74; and 1929, fig. 450) and the species may be provisionally included in Typhlosyrinx.

The shells obtained by Dr. Talbot are evidently juveniles of the same species as was obtained farther to the south-east by the Pieter Faure. In 1958 I was in two minds whether to refer the Cape shells to the Philippine dissimilis or the Cape Verde alberti. I now consider that slight differences in shape are unimportant, but that, on the other hand, the strong protractive bend in the growth-lines is sufficient to distinguish the Cape shells from both the other

Fig. 3. a, Typhlosyrinx subrosea n. sp. b, protoconch. c, radula as arranged in radula sac. d, radula tooth, with apex further enlarged. e, Typhlomangelia polythele n . sp. f, radula tooth, with apex further enlarged. g, Typhlosyrinx chrysopelex n . sp. h, radula tooth, with apex further enlarged.
species. The protoconch was missing in dissimilis, and though present in the living example of alberti, was not stated to be coloured.

Several species with coloured (brown or yellow) protoconchs on a white shell have been described (see: Dautzenberg, 1927), mostly assigned to 'Pleurotoma'.

The Pieter Faure shells are regarded as Types of the adult. One of the shells of S. Afr. Mus. Ai643 was sent to Tomlin, and presumably remains in his collection. The specimens S. Afr. Mus. A9858, from the largest of which the radula was extracted, may be regarded as Types of the juvenile and radula.

In the 1958 description (p. 147), for protoconch 'lip', read 'tip'.

Typhlosyrinx chrysopelex n . sp.

(Fig. 3 g)
Protoconch 3 whorls, somewhat worn, whorls pliculose, cancellate on lower half. Postnatal whorls $4 \frac{1}{2}$, profile shouldered slightly above middle of whorl. Slightly oblique axial ribs from shoulder to suture, petering out on base, i3 on ist whorl, i5 on 2nd, i6 on 3rd, and ig on last whorl. No spiral sculpturing, except 12-I5 feeble lirae on rostrum. Sulcus slightly concave, lip sinus shallow. Growth-lines distinct on sulcus, some of them pliculose below the suture. ig $\times 9 \mathrm{~mm}$. No operculum. White, glossy, protoconch yellowishbrown (faded).

Animal pale, eyes present. Radula with 25 pairs of dagger-like, barbed and flanged teeth, base broad and concave.
$34^{\circ} 36^{\prime}$ S., 17° oó E., I,500-1,76o fathoms, i living (S. Afr. Mus. A9857, F. H. Talbot coll.).

Remarks. Also placed provisionally in Typhlosyrinx.

Typhlosyrinx subrosea n . sp.

(Fig. 3^{a-d})
Thin-shelled. Protoconch $3 \frac{1}{2}-4$ whorls, with (except ist) oblique (protractive) pliculae, crossed below the periphery by retractive pliculae, producing a micro-clathrate sculpture. Postnatal whorls $4 \frac{1}{2}$, profile evenly convex, the sulcus not concave, scarcely distinguishable from rest of profile. No axial sculpture except the growth-lines, which are sigmoid but not very concave across the sulcus. Impressed spiral striae scarcely indicated on ist and 2nd whorls, but becoming distinct near end of 2nd whorl, c. 16 on 2 nd- 3 rd, c. 20 on 3 rd -4 th, c. 24 on $4^{\text {th }}$ whorl, with $2-4$ additional finer ones on the sulcus above the 'shoulder'. On base at least 36 striae, extending to end of rostrum. Columella curved, canal rather short and narrow. In the larger living shell no columellar callus concealing the spiral striae; in the smaller dead shell a weak callus partly concealing the striae, especially on the rostrum. $36 \times \mathrm{r} 6 \mathrm{~mm}$. No operculum. Very pale translucent pink, protoconch golden-brown.

Animal pale, no eyes. Radula with io pairs of rather short, dagger-like teeth, apically barbed and flanged.
$33^{\circ} 5^{\prime}$ S., $16^{\circ} 5^{\prime}{ }^{\prime}$ E., I, $380-\mathrm{I}, 520$ fathoms, i living, I dead (S. Afr. Mus. Ag822, F. H. Talbot coll.).

Remarks. Somewhat similar to the shells described as pyrropelex, but the sulcus not so distinct and the columella more curved.

Philbertia cala (Watson)

(Fig. $4{ }^{b-e)}$
Clathurella cala Watson, 1886, p. 361, pl. 26, fig. i 1 .
Protoconch $3 \frac{1}{2}$ whorls, last $2 \frac{1}{2}$ with fine oblique protractive pliculae, and on the lower half of the whorl oblique retractive pliculae between the protractive ones, giving a faint cancellate or granulate sculpture. Postnatal whorls $5 \frac{1}{2}$, profile strongly convex, shoulder well marked but rounded (Watson: 'hunchy'). Oblique protractive axial riblets 12 on ist whorl, increasing to 18

Fig. 4. a, Moniliopsis psilaropsis n. sp. with radula tooth. b, Philbertia cala (Watson). c, protoconch. d, two views of radula tooth. e, aperture with animal, as preserved, showing grooved foot.
on last, on the early whorls traceable across the sulcus, but not on the last 2 (or 3) whorls, continued across base; crossed by fine spiral lirae 4 on ist whorl, 5 on 2 nd, 5^{-6} on 3 rd, 8 on $4^{\text {th }}$ and 10 on last whorl ($6-7$ main lirae plus intermediaries). On base 6-7 main lirae plus intermediaries, but on rostrum lirae subequal. Sulcus concave, lip sinus rather deep. $19 \times$ io mm . No operculum. White, protoconch chestnut-brown.

Animal pale, no eyes. Radula with 20-25 pairs of short, dagger-like, unbarbed teeth.
$34^{\circ} 4^{\prime}$ S., $16^{\circ} 54^{\prime}$ E., $1,725^{-1}$, 780 fathoms, 3 living (S. Afr. Mus. A979o, F. H. Talbot coll.).

Distribution. South Atlantic: $32^{\circ} 24^{\prime}$ S., I $3^{\circ} 5^{\prime}$ W., I, 425 fathoms (Watson).
Remarks. These specimens agree so well with Watson's description that the identification seems certain. There are only two points to note: the largest of the present specimens is 19 mm . long with $5 \frac{1}{2}$ whorls, the Challenger shell only 0.55 inches with the same number of whorls; and the Cape shells have 2-3 ribs more than the Challenger shell. These differences seem insignificant as against the essential similarities.

One of the present specimens with 4 postnatal whorls has all the lirae on the $3^{\text {rd }}$ and $4^{\text {th }}$ whorls subequal, not divided into main and intermediaries.

In all three specimens the elongate grooved tongue-like foot has not been withdrawn within the aperture. This reaction to the preservative seems to be peculiar to this species, because it has not occurred in any of the other Turritid specimens in the present collection, all of which were preserved in the same manner. In the latter the foot is contracted into a compact mass and withdrawn within the aperture.

Comparable (conchologically) species in deep water off the New England coast seem to be Pleurotomella saffordi V. \& S. and benedicti V. \& S., I884.

Mangilia (?) sp.
(Fig. 2f)
Protoconch corroded. Profile of whorls convex, with a slight shoulder. Postnatal whorls 5 . Oblique axial ribs 14 on 3 rd whorl, increasing to 16 on 5 th whorl, crossing the sulcus, and also base; c. i5 spiral lirae between shoulder and suture on 3 rd whorl, crossing the ribs, increasing to at least 20 on 5 th whorl; on base at least 30 lirae. Growth-lines forming an even curve on sulcus, those which are continued as axial ribs stronger than the others. Lip sinus moderately deep. Columella slightly curved, canal short, rather wide. $15 \times 6.5 \mathrm{~mm}$. White.
$33^{\circ} 50^{\prime}$ S., $17^{\circ} 2 I^{\prime}$ E., 600 fathoms, I dead (S. Afr. Mus. Ag696, F. H. Talbot coll.).

Three specimens resemble the above described shell, but have 20 axial ribs on the last whorl.
$34^{\circ} 37^{\prime}$ S., $17^{\circ} 03^{\prime}$ E., I, $580-1,620$ fathoms, I dead; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., r,480-1,66o fathoms, 2 dead (S. Afr. Mus. A9775, Ag8o3; F. H. Talbot coll.).

Daphnella (?) verecunda n. sp.
(Fig. $2 e$)
Protoconch corroded. Profile of whorls angular. Postnatal whorls 7. Oblique axial ribs 12-13 on $4^{\text {th }}$ and $5^{\text {th }}$ whorls, 4^{-15} on 6 th and 7 th, from
shoulder to suture, evanescent on base; crossed by 6-7 spiral lirae on 4 th and 5 th whorls, $7-8$ on 6 th and 7 th, c. I 5 on base, including on the latter some intermediaries; no spiral lirae on sulcus, or only extremely faint ones visible in places. Growth-lines forming a nearly even curve on sulcus, without pliculae. Columella curved, canal short, moderately wide. $22 \times 10.5 \mathrm{~mm}$. White, middle portion of columella with faint salmon flush. No operculum.

Animal pale. Tentacles short, no eyes. Radula with c. 25 pairs of daggerlike teeth, proximally bifid, enclosing the poison gland, a short process on inner side proximally, apex sharply pointed, not barbed.
$33^{\circ} 50^{\prime}$ S., $17^{\circ} 21^{\prime}$ E., 600 fathoms, 2 living, I dead (S. Afr. Mus. A9697, F. H. Talbot coll.).

Remarks. Differs from Surcula sulcicancellata Brnrd. 1958 in having fewer ribs and no sculpturing on the sulcus.

The radula teeth have some similarity with those figured by Thiele (1929, fig. 45^{6}) for a species of Daphnella.

Daphnella (?) bitrudis n. sp.

(Fig. I b)
Very narrow fusiform. Point of protoconch broken, and apical whorls corroded; 7 postnatal whorls remaining. Profile of whorls evenly convex, no shoulder. Growth-lines for the most part distinct, somewhat variable but not forming axial ribs, strongly protractive on sulcus before passing over on to whorl. Fine spiral lirae 4 on 4 th whorl, 6 on 5 th, 8-9 on 6 th and io on 7 th, on base c. I5 additional lirae but not well defined on rostrum. Columella sinuous, canal long, narrow. $15 \times 3.5 \mathrm{~mm}$. White, glossy except where corroded.
$33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., 1,500 fathoms, 2 dead, but fresh (S. Afr. Mus. A9754, F. H. Talbot coll.).

Remarks. May be compared with Mangilia scipio Dall (i889, p. II 7, pl. io, fig. 12) from the West Indies, 124 and 982 fathoms; and Clathurella (Daphnella) monoceros Watson (1886, p. 365 , pl. 20, fig. i) from off Sierra Leone, 2,500 fathoms.

The genus is quite provisional; perhaps the species might fit into Spergo, but the suggestion is made without much confidence.

One of the most slender of the Turritids, being slightly more slender than Pleurotoma torta Dautzenberg (1912, p. 11, pl. i. figs. 3, 4).

Gymnobela sp .

Two dead specimens, $9.5 \times 6.5 \mathrm{~mm}$. and i3 $\times 8 \mathrm{~mm}$., closely resemble the figures of G. blakeana Dall 1889 and G. rhomboidea Thiele 1925, but the axial ribs are obsolete while the growth-line pliculae across the sulcus are distinct.

Although in fair condition, it is preferable to wait for more material, with the animal, before describing these shells.
$33^{\circ} 50^{\prime}$ S., $17^{\circ} 2 I^{\prime}$ E., 600 fathoms, I dead; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I, $480-$ r,660 fathoms, I dead (S. Afr. Mus. Ag698 and Ag8o4, F. H. Talbot coll.).

Gen. ?
Somewhat resembling Pleurotomella lottae Verrill 1885, from the New England coast, I,525 fathoms, but narrower and less ventricose. Five to six whorls, profile convex. Sulcus ?, not clearly marked. No axial sculpture. Spiral lirae over greater part of whorl, c. io, finer above and encroaching on the 'sulcus'. Growth-lines sigmoid, more or less pliculose below suture, especially on early whorls. II. 5×7, I3 $\times 7.5$ and $14 \times 8 \mathrm{~mm}$. White.
$33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I $480-\mathrm{I}, 660$ fathoms, I dead; $34^{\circ} 05^{\prime}$ S., $16^{\circ} 5^{\prime \prime}$ E., I,470-1,490 fathoms, 2 dead (S. Afr. Mus. A9807, A9840, F. H. Talbot coll.).

Cancellariidae

Cancellaria euthymei Brnrd.

Cancellaria euthymei Barnard, $1960 \mathrm{c}, \mathrm{p} .438$, fig. $\mathrm{I} b$.
$34^{\circ} 3^{\prime}{ }^{\prime}$ S., 17° oo' E., $\mathrm{I}, 500-\mathrm{I}, 76 \mathrm{o}$ fathoms, I living (S. Afr. Mus. Ag888, F. H. Talbot coll.).

Admete decapensis Brnrd.
Admete decapensis Barnard, $1960 \mathrm{c}, \mathrm{p} .439$, fig. I a.
$34^{\circ} 37^{\prime}$ S., 17° o3' E., $\mathrm{I}, 580-\mathrm{I}, 620$ fathoms, I living (S. Afr. Mus. A9777, F. H. Talbot coll.).

Since the above description was published, a second specimen has been found among the Fisheries Survey collections. Presumably it is from the same locality as the Type. It is of the same size as the Type. The columellar pleats are slightly more prominent; and posterior to the upper one is a pair of small narrow pleats close together.

Type and second specimen in the South African Museum.

Volutidae
 Guivillea alabastrina (Watson)

(Fig. 5)
Wyvillea alabastrina Watson, 1882, p. 332.
Guivillea alabastrina (Watson), Watson, 1886, p. 262, pl. 15, fig. 2. Pelseneer, 1888, p. 3, pl. 1,
figs. I, 2 (animal). Melvill \& Standen, 1907 , p. 140. Barnard, 1960 a, p. 398. South African Museum Report, 1961, pl. 4, fig. C.
Four worn and broken specimens were obtained. An apex consisting of protoconch plus 2 whorls; a portion of a very worn columella, identifiable by comparison with the following specimen; a protoconch plus $2 \frac{1}{2}$ whorls, length 77 mm .; and a protoconch plus $2 \frac{3}{4}$ whorls, length 90 mm ., together with fragments.

The protoconch agrees with Watson's description. Its extent is uncertain owing to corrosion of the surface, but $\mathrm{I} \frac{1}{2}$ (possibly 2) whorls would seem a reasonable estimate.

The columella (pillar), however. has no kink as has the Challenger shell, and it has a very slight groove, visible on the 77 and 90 mm . apices, but disappearing on the basal part of the columella as seen in the fragments.

The canal is not so markedly truncate as the figure of the Challenger shell would seem to suggest, even when seen in approximately the same position. Perhaps the edge of the canal was broken, but drawn by the artist as if unbroken.

The fragments from the same haul as the 90 mm . apex include: a portion of the outer wall of the shell with sutural inflexion, which does not fit on to the

Fig. 5. Guivillea alabastrina (Watson). a, b, two views of columella, with (slightly enlarged) sections. c, aperture of last whorl of specimen (protoconch $+2 \frac{3}{4}$ whorls), showing grooved columella. d, specimen Ag84i with, e, view of broken end of columella at a point opposite x , at right angles to frontal view. (All figures about $\frac{6}{7}$ natural size.)
apex as far as the latter is preserved; the canal with adjacent columella (pillar) to the upper end of which another fragment of columella appears to join (the opposed surfaces are not large enough to form an undeniable 'fit').

There is some doubt whether the 90 mm . apex and the columella fragments belong to one or two shells.

Dr. Talbot tells me that the contents of the dredge when it came aboard formed such a compact mass of globigerina ooze that the extraction of the animals was difficult. Nevertheless he thinks that if a second shell (apex) had been present it would not have been overlooked.

If the apex and the columella are placed end to end in their correct relative position, and without allowance for the probable loss of small intervening pieces, the shell would be at least $7 \frac{1}{2}$ inches long; the Challenger shell was $6 \frac{1}{2}$ inches long, and the species may well grow an inch larger.
$34^{\circ} 37^{\prime}$ S., 17° o3' E., $1,580-1,620$ fathoms, i protoconch plus 2 whorls; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I, $480-1,660$ fathoms, I columella (worn); $34^{\circ} 05^{\prime}$ S., $16^{\circ} 58^{\prime}$ E., $1,47^{-1}, 490$ fathoms, I protoconch plus $2 \frac{1}{2}$ whorls; $34^{\circ} 36^{\prime} \mathrm{S}$., 17° O0' E., I, 500-1,760 fathoms, I protoconch plus $2 \frac{3}{4}$ whorls, and fragments (S. Afr. Mus. A9776, A9809, A984i, and A9870; F. H. Talbot coll.).

Distribution. Between Marion Island and the Crozets, $46^{\circ}{ }^{1} 6^{\prime}$ S., $48^{\circ} 27^{\prime}$ E., I,6oo fathoms (Watson: Challenger); South Orkneys (Melvill \& Standen: Scotia).

Remarks. This is the most interesting of the results of Dr. Talbot's deep-sea dredging.

Watson gave only a general description of the external appearance of the Challenger animal. In 1882 he said that Prof. Huxley had undertaken the detailed description of the anatomy, and in 1886 he said the description would appear elsewhere (i.e. not in his Challenger Report). I have not been able to trace any description by Huxley.

The animal, however, was submitted to Pelseneer, and a brief account appeared in a later volume of the Challenger Reports (Pelseneer, 1888, p. 3, pl. I, figs. I, 2). Pelseneer figured the foot and cephalic region from the right side, but undertook no dissection or anatomical investigation except to remove and section one of the rudimentary unpigmented eyes (Thiele, 1929, repeated Watson's statement that eyes were absent).

Possibly, therefore, the radula is still within the remains of the animal. Mr. Dance (in litt. 2 Febr. 1960) told me that the animal was intact in the British Museum. Can no one be found to extract the radula and confirm, or otherwise, the animal's position in the Volutidae?

Fasciolariidae?

Gen. ?
Two broken and corroded shells, one 30 mm . long, the other $23 \times 10 \mathrm{~mm}$., extracted from anemones. Whorls preserved: 5 and 4 respectively. Aperture (incl. canal) about $\mathrm{I} \frac{1}{2}$ times the spire. Profile evenly convex, but possibly with a slight midwhorl shoulder. No sulcus. Columella slightly curved, no pleats; canal well marked. No axial sculpture; spiral lirae on last whorl (4th) of smaller shell 12-13, regular, subequal; on 5th whorl of larger shell 12 on upper half, 6 on lower half of whorl. Although the numbers of lirae on the two shells differ in number and strength, they cover the whorl completely between upper and lower sutures. On base (of smaller shell) 12 lirae plus c. 8 on rostrum.
$34^{\circ} 37^{\prime}$ S., $17^{\circ} 03^{\prime}$ E., $1,580-1,620$ fathoms, 2 dead (S. Afr. Mus. A9774, F. H. Talbot coll.).

Mitridae
 Gen. Charitodoron Tomlin

Barnard, i960b, p. 402.
Examination of the living material brought up by Dr. Talbot's dredging has resulted in transferring this genus from the Buccinidae to the Mitridae.

Fam. ?
Nux alabaster Brnrd.
Nux alabaster Barnard, 1960 c, p. 440, fig. 2.
The radula of this curious species indicates one of the Rhachiglossate families, but its exact systematic position remains doubtful.

Mr. A. E. Salisbury (in litt. 20 June 1961) has drawn my attention to the previous use of the generic name Nux, viz.: Humphrey, Mus. Callonianum, 1797, p. 59. This work was arbitrarily rejected by the International Committee (Opinion 51). But a future International Committee may, also arbitrarily, reverse this opinion. The name is in Sherborn's Index Animalium 1758-1800, but not in Neave's Nomenclator. For the time being I maintain the name.

Buccinidae

Neptunea bonae-spei n. sp.
(Fig. $6 a, b$)
Protoconch $2 \frac{1}{2}$ whorls, smooth, but corroded and junction with ist postnatal whorl indistinct. Postnatal whorls 6 ; profile of whorls evenly convex. Axial ribs c. 15 on ist whorl (but slightly corroded), 16 on 2 nd, 18 on 3 rd, 20 on 4 th, 22 on 5 th, and 26 on 6th whorl, straight or slightly retractive, from suture to suture, obsolete on base; crossed by spiral lirae 5 or 6 on ist, $7-8$ on 2 nd, 8 on 3 rd and 4th, io plus intermediaries on last two whorls, c. 24 on base. Canal short, rather wide. $55 \times 26 \mathrm{~mm}$. and $5 \mathrm{I} \times 27 \mathrm{~mm}$. Operculum ovate, nucleus apical, $14 \times 9 \mathrm{~mm}$. Creamy-white with pale buff, thin, somewhat scabrous periostracum; operculum amber-brown.

Animal pale. Eyes well developed. Radula with $80-85$ rows, central plate quadrangular, with median cusp, sometimes a minute denticle on one side or on both sides; lateral plate much stronger than central plate, unequally bicuspid, with $2-5$ tiny denticles between the two cusps, the denticles not always symmetrical.
$33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I, 500 fathoms, i living; $33^{\circ} 52^{\prime}$ S., $16^{\circ} 51^{\prime}$ E., 1,380-1,520 fathoms, 2 living (Types), 2 dead; $34^{\circ} 36^{\prime}$ S., $1^{1}{ }^{\circ}$ oo' E., $1,500-$ i,760 fathoms, i living (S. Afr. Mus. A9757, A9826 (Types), and A9887, F. H. Talbot coll.).

Remarks. The assignation of this Cape species to the old boreal genus \mathcal{N} Netunea may seem strange; it is admittedly somewhat unsatisfactory, but it is an alternative to instituting a new genus.

The shell is an ordinary-looking Buccinid, but the radula has unusual features.

The central plate resembles that of Mohnia (see Thiele, 1929, fig. 342), Chauvetia (Lachesis) (see Thiele, 1929, fig. 357), some species of Sipho (e.g. islandicus, gracilis, glaber) (see Sars, 1878, pl. x, figs. 19, 20, 21), and Lachesis australis von Martens (= albozonata Watson) (see Thiele, 1903, pl. 9, fig. 55; also Powell, 1951, fig. K 59).*

On the other hand the lateral plate agrees with that of none of these genera, but closely resembles that of Chrysodomus turtoni (see Sars, 1878, pl. x, fig. 16). Thiele (1929) puts Chrysodomus as a synonym of Neptunea, but does not mention a particular species as its representative. The length of the outer cusp and shortness of the inner cusp give the lateral plate of C. turtoni and Neptunea bonae-spei a distinctive shape. (The central plate of C. turtoni has no cusp.)

The specimen from $34^{\circ} 36^{\prime} \mathrm{S}$., $17^{\circ} \mathrm{E}$. (Ag887), is more slender than the other specimens; the axial ribs are evanescent on the last whorl, and obsolete on the back of the outer lip.

I have been shown a 7 -whorled specimen (in coll. Fisheries Survey) $62 \times 30 \mathrm{~mm}$. On the 7 th whorl the axial ribs are obsolete.

Prosipho torquatus n. sp.
(Fig. $6 c, d, e$)
Protoconch $\mathrm{I} \frac{1}{2}$ whorls, alt. and diam. I mm. Postnatal whorls 4 ; profile of whorls angularly shouldered, but not sharply, a little above middle of whorl. Axial ribs on ist whorl (partly corroded) i6, on each of the following whorls I7-18, from shoulder to suture, and extending across base; crossed by spiral lirae $3-4$ on 2 nd whorl, $5-7$ on 3 rd, $8-9$ on 4 th whorl; small granules on the intersections, those on the shoulder slightly larger than the others; I5 additional lirae on base. Below the suture a circlet of granules, about twice as many as the axial ribs. $15.5 \times 7 \mathrm{~mm}$. Operculum $4 \times 2 \mathrm{~mm}$., ovate, nucleus apical. Dirty white, operculum pale amber.

Radula with 75 rows, central plate excised in front, with 3 cusps, lateral plate strong, twice as long as the central plate, with 2 apical cusps.
$34^{\circ} 37^{\prime}$ S., 17° o3' E., $1,580-1,620$ fathoms, 1 living (Type); $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $1,480-1,660$ fathoms, I dead; $34^{\circ} 36^{\prime}$ S., I 7° oo' E., $1,500-1,760$ fathoms, i dead (S. Afr. Mus. Ag884, Ag8oi and Ag886 respectively; F. H. Talbot coll.).

Remarks. P. astrolabiensis (Strebel) seems to be the only other species with a bicuspid lateral radula plate, the others having more than two (3-6). The shape

[^1]of the lateral plate, however, in the present species is different from that of astrolabiensis as figured by Powell (1951, fig. K 56). When mounting the radula some of the lateral plates were purposely displaced into various positions, but none of them assumed the shape shown in Powell's figure.

The shell of astrolabiensis is quite different from the present shell.
This record forms a noteworthy extension of the known distribution of this Antarctic and sub-Antarctic genus.

Fig. 6. a, Neptunea bonae-spei n. sp. b, central and lateral plates of radula. c, Prosipho torquatus n. sp. d, two views of protoconch. e, central and lateral plates of radula.

Pyrenidae

> Pyrene cf. profundi (Dall)

Astyris profundi Dall, 1889, p. 192, pl. 35, fig. 3.
Columella (Astyris) profundi Dautzenberg, 1927, p. 89.
Protoconch nucleus diam. 0.25 mm ., plus 7 whorls. Profile of whorls slightly convex. Spire longer than aperture. Surface smooth, without any sculpture, the growth-lines for the most part very indistinct; but a few spiral lirae on rostrum. Outer lip sometimes with feeble varicoid thickening; no plicae on inner surface. No periostracum. i i $\times 5 \mathrm{~mm}$. Operculum subtriangularly ovoid, thickened on inner surface in basal half (i.e. from nucleus onwards), the thickening extending along both lateral margins and also forming a midrib, leaving a semi-oval thinner area between the latter and the margins; midrib not (or scarcely) visible on external surface. White, operculum amber.

Radula normal, proximal cusp on lateral plate well separated from the bifalcate apex.
$34^{\circ} 36^{\prime}$ S., 17° oo' E., $1,500-1,760$ fathoms, 8 living, 9 dead; $33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I,500 fathoms, I dead (S. Afr. Mus. A9864 and A9758 respectively; F. H. Talbot coll.).

Remarks. A perfectly plain, smooth and slightly glossy species, comparable with both Astyris diaphana Verrill from off east coast of North America and with A. profundi Dall from the same region and also the Azores and Cape Verde; but intermediate between the two in proportions.

The appearance of a trident on the internal surface of the operculum is not distinctive, because it occurs in P. filmerae and in Columbella fulgurans.

Muricidae

Trophon acceptans Brnrd.
(Fig. 7 a)
Trophon acceptans [partim] Barnard, 1959, p. 202, figs. $40 d$ (radula), $43 b$ (only the fig. of adult)
(only the adults $\mathrm{A}_{3449}, \mathrm{~A}_{3473}$ and A_{3480}).
$33^{\circ} 50^{\prime}$ S., $17^{\circ} 21^{\prime}$ E., 600 fathoms, 4 living, 7 dead; $33^{\circ} 36^{\prime}$ S., $16^{\circ}{ }^{15} 5^{\prime}$ E., I, $5^{20-1}, 57^{\circ}$ fathoms, 9 living, 2 dead; $33^{\circ} 45^{\frac{1^{\prime}}{}}$ S., $16^{\circ} 23^{\frac{1^{\prime}}{}}$ E., $\mathrm{I}, 480$ fathoms, 2 living; $33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I, 500 fathoms, 8 living, I dead; $34^{\circ} 37^{\prime}$ S., I 7° o3' E., I, $580-\mathrm{l}, 620$ fathoms, 4 living, I dead; $34^{\circ}{42^{\prime}}^{\prime}$ S., $16^{\circ} 54^{\prime}$ E., I,725I, 780 fathoms, 2 living, 2 dead; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $1,480-\mathrm{r}, 660$ fathoms, ıо living; $34^{\circ} 05^{\prime}$ S., $16^{\circ} 58^{\prime}$ E., r,470-r,490 fathoms, 2 living; $34^{\circ} 36^{\prime}$ S., ${ }^{1} 7^{\circ}{ }^{\text {oo }}{ }^{\prime}$ E., I,500-1,760 fathoms, 3 dead (S. Afr. Mus. A97or, A9734, A9743, A9759, A9778, A979i, A98i i, A9842, A9865; F. H. Talbot coll.).

The new material comprises 56 specimens ranging from io to 46 mm . in length, most of them living.

Fig. 7. a, Trophon acceptans Brnrd., multicostate variations. b, Trophon cf. droueti Dautzenberg.

In the original description were included some juveniles, 3.5 to 8 mm ., which appeared to be conspecific with the adults, the smallest of the latter being 18 mm . in length. I am now inclined to think this was an error, and that not enough importance was attached to the position of the shoulder. There is, in fact, in these juveniles no angular shoulder, and the highest part of the profile of the ribs is at, or nearly at, a level with the suture (see figs. of juv.). The recently obtained io mm . specimen shows, although the apex is corroded, that there is a definite angular shoulder from at least the 2nd (postnatal) whorl onwards. Therefore the juveniles from the Agulhas Bank, Algoa Bay and East London are now excluded from acceptans, and considered as belonging to a separate species. This is best left without a name pending the discovery of further and better material.

The original description, omitting those characters which apply to the juveniles, may be emended and added to as follows: Postnatal whorls 7 (ist whorl corroded in all specimens); 2nd and following whorls angularly shouldered; axial ribs on 2nd and 3rd whorls II-12, on $4^{\text {th }}$ and $5^{\text {th }}$ 12-13 , on 6th and 7th I3-14, sharply keeled and slightly squamosely lamellate at the shoulder (when not worn or corroded); on the later whorls the intervals between the ribs become U-shaped, and when the ribs are far apart the intervals are very open and flat. The rostrum and canal may be slightly curved in the largest shells. A thin, pale brown periostracum, which usually comes away when the investing Epizoanthus is removed. Radula of large specimens with 125-135 rows.

Remarks. All the material collected by the Pieter Faure and Dr. Talbot came from the same area (see original description and the localities given above). The bathymetrical distribution is as follows:

At 630-8oo fathoms 7 specimens 18 -2 I mm., somewhat corroded but clean, I of them living (Pieter Faure).

At 600 fathoms II specimens $10-22 \mathrm{~mm}$., somewhat corroded but clean, 4 of them living.

At $\mathrm{I}, 48 \mathrm{o}$ fathoms 2 living specimens 3 I and 35 mm ., somewhat corroded, part of each shell covered with the beginning of a colony of purple Epizoanthus (Coelenterate), with one or two polyps.

At 1,470-1,490 fathoms 2 living, 22 and 25 mm ., clean.
At $1,480-1,660$ fathoms io living, with Epizoanthus colonies.
At i,500 fathoms 9 specimens, 8 of them living, 21-45 mm., somewhat corroded, covered with Epizoanthus colonies, that on the largest shell with 7 polyps.

At $1,500-1,760$ fathoms 2 dead.
At $1,520-1,570$ fathoms in specimens, 9 of them living, $30-46 \mathrm{~mm}$., somewhat corroded, covered with Epizoanthus colonies, with up to 10 polyps on a shell.

At 1,580-1,620 fathoms 5 specimens, 4 of them living, with Epizoanthus colonies, and I dead extracted from an anemone (Actinian).

At 1,725-1,780 fathoms 4 specimens, 2 of them living, 30 and 32 mm ., clean.

No examples have been found in less than 600 fathoms, and all those obtained at this depth, and down to 800 fathoms, were not more than halfgrown. The largest shells, and also half-grown (23 mm .) and three-quartergrown shells were obtained at 1,480 fathoms and greater depths. The animals from lesser depths, though smaller, may nevertheless be sexually mature and represent a dwarf form. There is as yet no evidence on this point.

The purple Epizoanthus is found only at the greater depths, 1,480 fathoms onwards. It settles on half- or three-quarter-grown shells, and completely envelops the largest shells, including the whole ventral surface, though of course the polyps arise only dorsally and laterally. When the molluse is withdrawn into its shell there is nothing to indicate that the object is other than a clump of polyps, distasteful to fishes (as many Coelenterates are known to be) and possibly also to predaceous molluscs or Echinoderms.

The original figure of the 'adult' will serve also for the larger shells, and represents the typical form; two figures are here given showing multicostate variations.

In the original description the one living specimen (S. Afr. Mus. A3473) was designated the Type. The new material contains specimens which, because they show the size to which it grows, are really more typical of the species (? hypertypes).

A resemblance to tenuirostratus Smith 1899 and igoi was noted in the original description; but there is a considerably stronger resemblance to obtuseliratus Schepman igir. These are resemblances between specimens from the Cape and from localities in the Indian Ocean and the East Indies.

A more serious question is the possible identity of the Cape shells with guineensis Thiele (1925 , p. 169, pl. 30(18), fig. i I) from 2,278 metres in the Gulf of Guinea. Comparison of Thiele's figure and mine leaves little choice, and I fully expect that acceptans will not be accepted when further material is obtained from the Atlantic trough along the west coast of Africa. For the present the Cape shells are retained as a separate species.

Variation. The following examples I consider as no more than individual multicostate variations.

One (30 mm .) of the two examples from $\mathrm{I}, 480$ fathoms has 16 ribs on the 5 th, and 18 on the 6th whorl.

One (32 mm .) of the specimens from 1,500 fathoms has 15 ribs on the 3 rd whorl, and 16 on the $4^{\text {th, }} 5$ th and 6 th whorls.

One (27 mm .) of the specimens from $\mathrm{I}, 500$ fathoms has 16 ribs on the 3rd whorl, 18 on the 4 th and 5 th whorls, and 14 on the first three-quarters of the 6 th whorl followed by 2 ribs widely separated.

One (46 mm .) of the specimens from $1,520-1,570$ fathoms has 15 ribs on the 4 th whorl, 17 on the 5 th and 6 th whorls, and 15 on the 7 th whorl.

In the last-mentioned shell (46 mm .) the shoulder disappears on the last
(7th) whorl, and consequently the shell approximates in shape to the figure of declinans Watson, though the latter has no shoulder on any of the whorls.

Faint indications of 2 spiral lirae below the shoulder on the 6 th whorl were noted in the original description. In these multicostate variations there are indications of 3 or even 4 such lirae.

Trophon cf. droueti Dautzbg.
(Fig. 7 b)
Trophon droueti Dautzenberg, 1889, p. 37, pl. 2, figs. I a, b, c (hand-drawn).
1927, p. 92, pl. 7, figs. 26-28 (photo).
Protoconch $\mathrm{I} \frac{1}{2}$ whorls, alt. and diam. c. I mm. (slightly corroded). Postnatal whorls $3 \frac{1}{2}-4$, profile angularly shouldered, but shoulder becoming rounded on last whorl. Axial ribs $16-17$ on ist whorl, increasing to 24 on last, retractive from suture to shoulder, straight below, sharp, becoming distinctly lamellate on back of outer lip. On 2nd and 3rd whorls a feeble lira at the shoulder and another below it produce small nodules on the ribs; on last whorl 2 more lirae below the subperipheral one. 10-11•5 $\times 5 \mathrm{~mm}$. White.
 F. H. Talbot coll.).

Distribution. Azores, 1,287 metres.
Remarks. These shells are remarkably like droueti, and I deem it advisable not to institute a separate species for them, at least not until further material is available. They are slightly more slender (droueti: $8 \times 4 \mathrm{~mm}$.), thus possibly representing var. elongata Locard, 1897. The spiral lirae are very feeble, but sufficiently in relief to cast slight shadows, comparable with the grey bands in Dautzenberg's hand-drawn figures (1889).

Dautzenberg estimated from fragments that the species reached a size of 16 mm . The present specimens have a protoconch as large as that of acceptans, and the species may possibly reach a greater size than 16 mm . in the Cape area.

In Dautzenberg's fig. I b the number of riblets seems to be greater than would be expected.

Columbariidae

Columbarium rotundum Brnrd. and angulare Brnrd.

The localities from which specimens of these two species were obtained confirm the results obtained by the Pieter Faure (Barnard, 1959, pp. 235, 236). C. rotundum occurs in depths of $250-760$ fathoms; but angulare, which the Pieter Faure obtained in depths of 720-900 fathoms, has now been shown to extend down to 1,520 fathoms.

Cymatiidae

Thalassocyon bonus Brnrd.
Thalassocyon bonus Barnard, 196oc, p. 440, fig. 3 .
Excepting Guivillea, this is the most interesting Mollusc obtained by Dr. Talbot. The shell resembles in shape a Semifusus, but the animal was found to have a taenioglossate radula similar to that of Cymatium.

Oöcorythidae

Oöcorys watsoni Locard
Oöcorys sulcata (non Fischer) Watson, 1886, p. 412, pl. 17, fig. ir.
Oöcorys watsoni Locard, 1897, p. 288. Tomlin, 1927, p. 80. Barnard, 1963, p. 9.
Largest specimen 44×3 I mm. Dead specimens were previously taken by the Pieter Faure off Cape Point in 720-1,000 fathoms.

Naticidae

Polynices cleistopsila Brnrd.
Polynices cleistopsila Barnard, 1963, p. 64.
Falsilunatia pseudopsila Brnrd.
Falsilunatia pseudopsila Barnard, 1963, p. 64.

Pyramidellidae

Turbonilla cf. kraussi Clessin

Turbonilla cf. kraussi Clessin, Barnard, 1963, p. 85.
Although closely similar to the littoral and shallow-water kraussi, the single dead specimen will probably prove to be a distinct species when more material is obtained.

Cerithiopsidae

Cerithiella taylori Brnrd.
Cerithiella taylori Barnard, 1963, p. 126.

Lamellariidae

Lamellaria capensis (Bergh)
Lamellaria capensis Bergh, Barnard, 1963, p. 58.

Scalidae

Scala bonae-spei Brnrd.
Scala bonae-spei Barnard, 1963, p. ro4.

Abyssochrysidae

Abyssochrysos melanioides Tomlin
Abyssochrysos melanioides Tomlin, 1927, p. 78, figs. 1-3. Barnard, 1963, p. 141.
Previously taken by the Pieter Faure off Cape Point in 800-1,000 fathoms; now shown to occur down to 1,490 fathoms.

Trochidae

Calliotropis metallica (W.-M. \& A.)
(Fig. 8 a)
Solariella metallica Wood-Mason \& Alcock, 1891, p. 444, fig. $12 a, b$.
Previously taken by the Pieter Faure off Cape Point. A notable extension of the hitherto known distribution: Gulf of Manaar, East Indies, East Africa. An account of the species will be given in Part IV of Barnard, Contributions . . . South African Marine Mollusca.

Calliotropis pompe n. sp.
(Fig. 8 b)
Shell thin-walled. Protoconch nucleus plus 7 whorls. First to 3 rd whorls with c. 23-24 slightly retractive axial pliculae; on 3rd and following whorls crossed by a peripheral spiral lira at lower third of whorl, and at end of 3 rd whorl and on 4th and following whorls by a second lira at upper third; the upper lira forms conical tubercles at the intersections with the pliculae, c. 18-20 increasing to $c .25$ on 6th whorl, but becoming feeble and eventually evanescent on 7 th whorl; on 5 th-7th whorls the pliculae are distinct from suture to upper lira,

Fig. 8. a, b, sculpture of penultimate whorl of Calliotropis metallica (W.-M. \& A.) and C. pompe n. sp. c, Calliostoma glaucophaos n. sp., with two views of protoconch, central and ist marginal plates of radula.
extending less distinctly to the lower lira; from end of 5 th whorl onwards accessory pliculae develop at the suture, $2-3$ between each pair of main pliculae; similar accessory pliculae develop on the lower lira, so that the latter becomes finely granulate; on 7th whorl all the pliculae become less distinct and more or less indistinguishable from the growth-lines; the lower lira becomes almost smooth. On base growth-lines and pliculae continued, the latter becoming stronger towards the umbilicus; 5 spiral lirae, the outer 3 nearly smooth, the next one granulate, and the one bordering the umbilicus strongly granulate; umbilicus plicate within. $19 \times 17 \mathrm{~mm}$. (6 whorls); $22 \times 20 \mathrm{~mm}$. (7 whorls).

White, with a faint greenish tinge due to the nacreous interior. Operculum pale corneous.

Jaws and radula as in granolirata.
 $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $1,480-1,660$ fathoms, I living, I dead (Types) (S. Afr. Mus. A9795 and A9883 (Types) ; F. H. Talbot coll.).

Remarks. The procession (pompe) of close-set axial pliculae, and the granulate, instead of tuberculate (as in metallica and other species), lower spiral lira, seem distinctive.

Gen. Basilissa Watson

Watson, 1879, p. 593; 1886, p. 96. Schepman, 1908, p. 6ı. Thiele, 1925, pp. 43, 44; 1929, p. 48.
Dall (188i) instituted the genus Fluxina, and considered that it should probably be placed in the Solariidae, occupying in this family an analogous position to that of Basilissa among the Trochidae.

Fluxina discula Dall (1889, p. 273, pl. 23, figs. 5, 6), F. marginata Schepm. 1908, F. trochiformis Schepm. 1908 and the present species are very much alike in shape, differing from Basilissa by being strongly depressed. Admittedly the difference is one of degree only, because brunnea Dall 188I (genotype of Fluxina), lampra Watson 1879 (genotype of Basilissa) and alta Watson var. delicatula Dall (see 1889, pl. 22, fig. 2) form a series transitional to the higher species simplex Watson 1879 and superba Watson 1879.

The radulae of only a few species are known, e.g. lampra (see Schepman, 1908), sibogae Schepman 1908, and trochiformis (see Thiele, 1925). Thiele gave no figure of the latter. The present species has a radula somewhat resembling that of sibogae, but not at all like that of lampra.

Provisionally this n. sp. is included in Basilissa.

Basilissa gelida n. sp.

(Fig. 9)
Protoconch nucleus plus 5 whorls. Smooth, polished, periphery very sharply keeled. No spiral sculpture; fine close growth-lines, sigmoid both above the keel and on base. Umbilical wall smooth, vertical; umbilical margin rectangular, not keeled, no impressed line outside the margin. 8, alt. 3.5 mm .

White, transparent, slightly iridescent when wet.
Operculum not observed.
Jaws present, reticulate. Radula with c. 45 rows, central plate quadrangular, with slightly overturned cutting-edge, with feeble median cusp (? other serrations), lateral plate wide, with slightly overturned serrulate cutting-edge, ist marginal plate, hastate, distally obscurely serrulate, and 3 slender hamate marginals.
$33^{\circ} 2^{\prime}$ S., $16^{\circ} 33^{\prime}$ E., $1,24^{0-1,300}$ fathoms I living (S. Afr. Mus. A9720, F. H. Talbot coll.).

Fig. 9. Basilissa gelida n. sp., with radula plates.
Remarks. Differs from Fluxina discula Dall 1889 from the West Indies, 982 fathoms, only in having a non-carinate umbilical margin, without impressed line; and in being slightly nacreous.

There are 3 , possibly 4 , slender outer marginal plates in the radula, in addition to the stouter ist marginal plate.

Calliostoma glaucophaos n. sp.
(Fig. 8 c)
Shell like Solariella in shape, slightly wider than high. Protoconch nucleus plus $3 \frac{1}{2}$ whorls. Protoconch alt. o 8 , diam. i mm., smooth. Profile of whorls rounded, but with tabulate shoulder at upper third. One spiral lira forming the shoulder and one at middle of whorl, both beginning on ist whorl; a third, peripheral lira concealed in the suture until the last half-whorl. On the tabulate shoulder i lira near the suture followed by i (2nd whorl), 3-4 (3rd whorl), 5 (last half-whorl) very fine lirae, also between inner lira and suture $2-3$ very fine lirae visible on last half-whorl. Beginning on 2nd whorl i lira between the shoulder and mid-whorl lirae, and I between the latter and the peripheral lirae. Base with i lira almost as strong as the peripheral lira, starting at junction of outer lip and body-whorl, followed by c. 18 feeble lirae; umbilicus bordered by a strong lira; i feebler lira within the umbilicus, which is pervious but narrows rapidly. Growth-lines mostly faint, not pliculose. Aperture subcircular, slightly angular where outer lip meets the narrow lira-like columella. i (long) $\times 12.5$ (diam.) mm.

White, iridescent, umbilical and columellar lirae opaque white. Operculum amber.

Jaws with intercalated platelets. Radula with $c .50$ rows, resembling that of
perfragile, but the central plate is broader, with a broadly triangular cusp, minutely serrulate distally; 5 lateral plates, ist marginal plate strong, hooked and serrate distally. The lateral plates and especially the central plate are so very delicate that the shape of their bases could not be determined.
$33^{\circ} 5^{\prime}$ S., $16^{\circ} 5^{I^{\prime}}$ E., I $, 380-\mathrm{I}, 520$ fathoms, 2 living (S. Afr. Mus. A9830, F. H. Talbot coll.).

Remarks. The specimen with the strong outer basal lira is figured. In the other shell this lira is much weaker, but both it and the next one are more distinct than the other basal lirae. The columella appears to have been injured and repaired, and consequently is broader and somewhat concavely angular.

Although clearly distinct, these shells are not unlike Trochus (Margarita) charopus Watson 1879 and 1886 from Kerguelen, 105 fathoms, and, though less so, $T(M)$ brychius Watson 1879 and 1886, also from Kerguelen, I,26o fathoms.

There is a general resemblance to a Solariella; and unless the animal had been present these shells might perhaps have been assigned to Solariella.

NUDIBRANGHIATA

Doridoxidae
Doridoxa benthalis n. sp.
(Fig. io)
Length of animal as preserved c. 32 mm . Dull brown, the retracted rhinophores orange.

Frontal veil with lateral processes, on the underside of each process a wrinkled fold of skin connecting with the wrinkled margin of the mouth.

Fig. io. Doridoxa benthalis n. sp. Lateral and dorsal views of animal; ventral view of anterior end; front and inner views of left mandible; two central plates of radula in side view; central and lateral plates of radula.

Foot tapering posteriorly. Dorsal surface smooth, but with faint indications of 4 pairs of small warts. No gills. Genital opening, nephroproct, and anus on right side, the nephroproct a short distance in front of anus.

Jaws large, 4.5 mm . long, cutting-edge entire. Radula with 30 rows, central plate very strong, lateral plates II-12, dagger-like, graduated, the middle ones slightly larger than the others.

Internal organs not well enough preserved to determine the presence of a blood-gland, or whether there were 2 sphermathecae. There were, however, no liver diverticula.
$34^{\circ} 4^{\prime}$ S., $16^{\circ} 54^{\prime}$ E., $1,725^{-1}, 780$ fathoms, 1 (S. Afr. Mus. A9796, F. H. Talbot coll.).

Remarks. In spite of uncertainty about the internal anatomy, this specimen seems certainly to be a species of Doridoxa Bergh 1900, which was instituted for ingolfiana Bergh taken in the North Atlantic. There seem to be no later records.

I have not seen the original description, but Bergh (1906, pl. 31, figs. 7-12) gave 6 figures (presumably reproduced from his Ingolf Report, 1900), and Thiele (1929, fig. 521, after Bergh) figured the radula. The resemblance is close, but the present specimen appears to have no tentacles, larger lateral processes, and small differences in the radula plates. A n. sp. seems warranted and desirable.

SCAPHOPODA

Dentaliidae

Dentalium eualdes n. sp.
Thick-walled, moderately curved, ribs very numerous. Ribs $16-18$ on the smallest shells (30 mm), increasing to $65-85$ in the largest shells; ribs subequal to the grooves in larger specimens, but in juveniles usually narrower; the interpolation of intermediaries tends to narrow the grooves, and in large shells the ribs may be at least as wide as the grooves.

Ribs extending to aperture, but in the two largest shells there is an unribbed (or with only faint traces of ribs) 'collar' $3-4 \mathrm{~mm}$. long around the aperture.

Apical slit usually present, may be 5-7 mm. long; juveniles may show 2-4 elongate perforations.

86, diam. aperture 13, apex $3 \mathrm{~mm} . ; 90 \times 12.5 \times 2.75 ; 98 \times 14.5 \times 2.3 ;$ $99 \times 13 \times \mathrm{I} 75 \mathrm{~mm}$.

Dull grey, the unribbed collar, when present, white.
Radula as in salpinx.
$33^{\circ} 3^{\prime}{ }^{\prime}$ S., 16° I 5^{\prime} E., I, $520-\mathrm{I}, 570$ fathoms, 8 living (Types); $33^{\circ} 45 \frac{1}{2}^{\prime}$ S., $16^{\circ} 23 \frac{1}{2}^{\prime}$ E., $\mathrm{I}, 480$ fathoms, I living and I juv.; $33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $\mathrm{I}, 500$ fathoms, II living and 3 juv.; $33^{\circ} 26^{\prime}$ S., $16^{\circ} 33^{\prime}$ E., I, 300 fathoms, i living; $34^{\circ} 37^{\prime}$ S., 17° o3' E., $\mathrm{I}, 580-\mathrm{I}, 620$ fathoms, I adult living, I juv. dead; 33° 50^{\prime} S., $16^{\circ} 30^{\prime}$ E., $\mathrm{I}, 480-\mathrm{I}, 660$ fathoms, 18 living, 2 dead $; 33^{\circ} 52^{\prime}$ S., $16^{\circ} 5^{\prime \prime}$ E., 1,380-1,520 fathoms, I living, I dead; $34^{\circ} 05^{\prime}$ S., $16^{\circ} 5^{\prime}$ E., $1,470-1,490$ fathoms, 12 living, I dead; $34^{\circ} 36^{\prime}$ S., $17^{\circ} 00^{\prime}$ E., I,500-1, 760 fathoms, I juv.
dead (S. Afr. Mus. A9736 (Types), A9747, A9765, A9767, A9784, A98ı5, Ag834, A9849, A9875; F. H. Talbot coll.).

Remarks. Grows to a larger size than salpinx Tomlin, and has many more ribs.

It is not capillosum: it is more strongly curved during early growth, and the diameter increases more rapidly. On one of the smaller examples (52 mm .) the diameter increases from $\mathrm{I} \cdot 3$ to 5.5 mm . in a length of 30 mm ., whereas in a specimen of capillosum (identified by Tomlin) the diameter reaches only 3 mm . in the same length. These two differential characters can also be observed by superimposing the 52 mm . shell on Watson's figure of the Challenger example of capillosum (1886 pl . I , fig. I a).

The present species is stouter than the figure of magnificum Smith 1898 pl. 7, figs. 5, 5 a ($=$ vernedei Hanley).

Dentalium lardum n. sp.

Moderately curved. Smooth, glossy, with fine growth-lines. Apical portion ribbed, the ribs usually extending farther on the concave side, c. 20 , increasing to 27-30 (but somewhat obscure), obsolete on later growth. No slit or perforations. Details of the specimens as follows.

40 , diam. aperture 5.5 , apex 0.75 mm . Glossy white; ribbed for the apical 23 mm ., faintly indicated for another $7-8 \mathrm{~mm}$. on concave side, thereafter only growth-lines; ribs 20 , increasing to 27 .
$49 \times 7 \times \mathrm{I} \cdot 3 \mathrm{~mm}$. Glossy, first two-thirds grey, thereafter white; ribs faintly visible only in the apical io mm .
$50 \times 7 \times \mathrm{I} 5 \mathrm{~mm}$. Glossy, ivory-white; partly corroded apically, but no trace of ribs.
$65 \times 8.5 \times 2 \mathrm{~mm}$. Glossy, grey or yellowish-grey; ribs faintly visible in apical I5-18 mm., more so on concave side than on convex, ribs c. 30 (but not easy to trace).
$33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I, 500 fathoms, 5 dead (Types); $33^{\circ} 5^{\prime}$ S., $16^{\circ} 51^{\prime}$ E., 1,380-1,520 fathoms, 2 dead; $34^{\circ} 36^{\prime}$ S., 17° oo' E., $1,500-1,760$ fathoms, i juv. dead (S. Afr. Mus. A9768 (Types), A9835, A9876; F. H. Talbot coll.).

The specific name from the smooth, somewhat greasy appearance.

Dentalium sp.

One shell $7 \cdot 5$, one 8 , one I I, one 13 , and one 17 mm . long. Slightly curved. Ribs 9 on all specimens from apex onwards; at 13 mm . one intermediary begins between each pair of main ribs, and on the last 4 mm . of the 17 mm . shell there are 18 ribs, the intermediaries almost as strong as the main ribs. Apical diam. $0.4-0.5$, basal diam. of 13 mm . shell $\mathrm{I} \cdot 3$, of 17 mm . shell I. 5 mm . Growth-lines but no other sculpture between the ribs.
$33^{\circ} 26^{\prime}$ S., $16^{\circ} 33^{\prime}$ E., $1,24^{-1}$, 300 fathoms, the 2 largest; $34^{\circ} 37^{\prime}$ S., $\mathrm{I}^{\circ} \mathrm{ob}^{\circ}$ E., $\mathrm{I}, 580-\mathrm{I}, 620$ fathoms, $\mathrm{I} ; 34^{\circ} 36^{\prime} \mathrm{S} ., \mathrm{I} 7^{\circ}$ oo' E., $\mathrm{I}, 500-\mathrm{I}, 760$ fathoms, r; all dead (S. Afr. Mus. A9885, A9877, A9785 resp.; F. H. Talbot coll.).

Remarks. Further material is desirable before a name is given to these specimens. But attention is drawn to the rather sudden doubling of the number of ribs; a larger specimen with the apical 13 or 14 mm . broken off would be regarded as an i8-ribbed species.

Dentalium sp.

$33^{\circ} 50^{\prime}$ S., $17^{\circ} 21^{\prime}$ E., 600 fathoms, 17 dead (S. Afr. Mus. A9769, F. H. Talbot coll.).

A species with 18 -22 ribs, comparable with but distinct from plurifissuratum. Up to 35 mm .

In this case also, more and better material seems desirable before attaching a specific name to these specimens.

Dentalium capense Tomlin
Dentalium capense Tomlin, 1931, p. 344°.
$33^{\circ} 50^{\prime} \mathrm{S} ., 17^{\circ} 21^{\prime}$ E., 6oo fathoms, I living, 2 dead (S. Afr. Mus. A9770, F. H. Talbot coll.).

Previously taken by the Pieter Faure off Cape Point in 900 fathoms; and also off Durban in 440 fathoms.

Cadulidae

Cadulus promontorii n. sp.
Previously taken by the Pieter Faure off Cape Point in 700 fathoms.
For description and figure see: Barnard, Contributions . . . South African Marine Mollusca, Part IV [in press].

CEPHALOPODA

Cranchiidae

Leachia cyclura Lesueur
Leachia eschscholtzii Rathke, Chun, 1910, p. 347, pl. 52, figs. 4-7.
$33^{\circ} 45^{\prime}$ S., $16^{\circ} 23^{\prime}$ E., 1,480 fathoms, 1 specimen (S. Afr. Mus. A9749, F. H. Talbot coll.).

LAMELLIBRANCHIATA

Nuculidae
Nucula (Pronucula) benguelana Clarke
(Fig. II a)
Pronucula benguelana Clarke, 196i, p. 368, pl. 3, figs. 9, 1 1.
Shell thin, subtriangular, not very oblique, length only slightly greater than altitude. Young shell, alt. i mm., large, prominent and sharply demarcated from rest of shell. Whole surface with numerous fine radiating striae, except in the positions of the lunule and escutcheon, which are otherwise undefined. Teeth anterior 7-8, posterior 6-7; ligament pit vertical to hinge-
line; margin internally crenulate. Length 3.75 , alt. 3.5 mm . Corneous, young shell paler.
$34^{\circ}{ }^{2} 6^{\prime}$ S., 17° oo' E., $1,500-\mathrm{I}, 760$ fathoms, I living (S. Afr. Mus. A9882, F. H. Talbot coll.).
30° 14' S., $13^{\circ} 3^{\prime}$ E., 1,703 fathoms (approx. 400 miles north-west of Cape Town) (Clarke).

Remarks. Somewhat similar in shape to the North Pacific profundorum Smith (i885, p. 229, pl. 18, fig. i3), and the striae are, in Smith's words: 'hair-like whitish lines'.

Fig. i i. a, Nucula (Pronucula) benguelana Clarke. b, Malletia estheriopsis n. sp. c, Leda parsimonia n. sp. d, Leda macella n. sp. e, Sarepta sp.

Malletiidae

Malletia estheriopsis n. sp.
(Fig. I I b)
Thin, oblong-oval, rounded at both ends, the anterior end a little less broadly rounded, posterior dorsal margin straight; umbones at anterior third, not prominent. Concentric growth-lines only. Teeth anterior 12-I3, posterior $28-30,2-3$ inconspicuous teeth on each side of the interruption below the umbo; ligament entirely external, conspicuous, about $\frac{2}{3}$ length of straight dorsal margin. Pallial sinus deep. Periostracum thin, pale yellowish. Length I5, alt. 8 mm . Siphons completely fused.

Cape Point N. 70° E. 40 miles, 800 fathoms, I (S. Afr. Mus. P.F. coll.). $33^{\circ} 50^{\prime}$ S., $16^{\circ} \cdot 30^{\prime}$ E., $\mathrm{I}, 480-\mathrm{r}, 660$ fathoms, 2 living (Types); $34^{\circ} 36^{\prime}$ S.', 17° oo ${ }^{\prime}$ E., $\mathrm{I}, 500-\mathrm{I}, 760$ fathoms, 2 living; $34^{\circ} 33^{\prime}$ S., $16^{\circ} 43^{\prime}$ E., $\mathrm{I}, 770-\mathrm{l}, 880$ fathoms, i living; $34^{\circ} 05^{\prime}$ S., $16^{\circ} 58^{\prime}$ E., I, $470-\mathrm{I}, 490$ fathoms, 3 living (S. Afr. Mus. Ag8ı7 (Types), Ag88o, Ag89o, and Ag89ı respectively; F. H. Talbot coll.).

Remarks. These specimens seem to differ from other species in their bean-like shape, rounded at both ends. Jeffreys (1879, p. 573) said his Silicula fragilis was like an Estheria (Crustacea, Conchostraca), but these specimens qualify even better for the epithet.

Conchologically they closely resemble the Arctic obtusa Sars (1878, p. 41, pl. ig, figs. 3^{a-c}) but are not so obtuse and truncate posteriorly. Geographically, the nearest species is pallida Smith 1885 (p. 246, pl. 20, figs. 8, 8 a) from 2,250 fathoms between Tristan da Cunha and the Cape.

Ledidae

Leda parsimonia $\mathrm{n} . \mathrm{sp}$.
(Fig. II c)
Triangular, almost equilateral, umbones only slightly nearer to the anterior end; rounded at both ends. Middle of later part of shell with concentric pliculae, closer together near the margin, rest of shell with growth-lines only. Teeth 12 anterior, 15 posterior, with a few minute ones on each side of ligament pit. Pallial sinus very shallow. Length 13.25 , alt. 8.25 mm . Yellowish-brown, glossy. Animal decomposed; siphons?
$33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $\mathrm{I}, 480-\mathrm{I}, 66 \mathrm{o}$ fathoms, I living (S. Afr. Mus. Ag8ı8, F. H. Talbot coll.).

Remarks. Resembles Yoldia semisculpta Thiele in being only partially plicate, but differs in shape, and does not gape.

Leda macella n. sp.

(Fig. I I d)
Rostrate, anterior end broadly rounded, dorsal posterior margin straight (or very slightly concave), rostrum angular above, obliquely truncate, umbones at anterior $\frac{2}{5}$ of length. Border of lunule from umbo to upper corner of rostrum curved. Concentric growth-lines only, some on the later part of shell coarser than the others. Teeth at shell length 12 mm . 12-13 anterior, 14 posterior, increasing to $15-16$ and $16-17$ respectively, with a few minute ones on each side of the ligament pit. Pallial sinus moderately deep. No ridge on inner side of rostrum below, and parallel to the posterior series of teeth. Periostracum thin, yellowish or olivaceous brown. Length 20, alt. 10.5, thickness (valves together) 8 mm .
$33^{\circ} 26^{\prime}$ S., $16^{\circ} 33^{\prime}$ E., $1,24^{0-1,300}$ fathoms, I living; $33^{\circ} 45 \frac{1}{2}^{\prime}$ S., 16° $23^{\frac{1}{2}}{ }^{\prime}$ E., I, 480 fathoms, I living; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., I, $480-\mathrm{I}, 660$ fathoms,

I living; $34^{\circ} 05^{\prime}$ S., $16^{\circ} 58^{\prime}$ E., r,470-1,490 fathoms, a lot living (Types) (S. Afr. Mus. A9729, A975i, A9819, and A985i (Types) ; F. H. Talbot coll.).

Remarks. Similar in shape to prostrata Thiele 1931 and silicula Thiele 1931, but not so strongly nor so narrowly rostrate, and the rostrum is obliquely truncate; no longitudinal ridge on inside of rostrum; and the number of posterior teeth is less, in conformity with the shorter rostrum.
L. prostrata came from 98i metres in the middle of the South Atlantic $\left(25^{\circ} 25^{\prime}\right.$ S., $6^{\circ} 12^{\prime}$ E.), and silicula from $400-463$ metres off the East African coast.

Sarepta sp.

(Fig. II e)
Interior not nacreous (but only one dead valve present). Oval, not very oblique, length greater than altitude; posterior margin convex. Concentric ridges over whole surface. No lunule. Teeth anterior 12, posterior io. Ligament pit minute. Margin internally smooth. Length 5, alt. 4 mm .
$34^{\circ} 26^{\prime}$ S., 7° oo' E., I, 500-1 , 760 fathoms, i valve (S. Afr. Mus. Ag88i, F. H. Talbot coll.).

Limopsidae

Limopsis cf. straminea Smith

Limopsis straminea Smith 1885, p. 255, pl. 18, figs. 5, 5 a.
Shell oblique, length greater than altitude; anterior margin convex, posterior margin nearly straight in upper half. Umbo slightly nearer to anterior end of hinge-line. Concentric lirae, and fine radial striae marking the insertion of the bristles. Internally smooth, no radial ridges, and no marginal crenulations; no thickened pad at posterior adductor scar. Lower margin of hinge slightly concave, very narrowly separated from ligament pit. Teeth interrupted, in juv. up to $10 \mathrm{~mm} .4-5$, later 5-7 on each side (occasionally 8 on posterior side), the posterior ones slightly more oblique than the anterior ones.

Length 27-28, alt. 24-25, width (valves together) $10-11 \mathrm{~mm}$.
Foot with posterior process; byssus rudimentary.
$33^{\circ} 26^{\prime}$ S., $16^{\circ} 33^{\prime}$ E., $1,24^{0-1,} 300$ fathoms, 3 living; $33^{\circ} 26^{\prime}$ S., 16° ${ }^{1} 5^{\prime}$ E., $1,5{ }^{20-1}, 570$ fathoms, 17 living; $33^{\circ} 45^{\frac{1}{2}}{ }^{\prime}$ S., $16^{\circ} 23^{\frac{1}{2}}{ }^{\prime}$ E., 1,480 fathoms i2 living; $33^{\circ} 49^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $\mathrm{I}, 500$ fathoms, io living; $34^{\circ} 37^{\prime}$ S., $17^{\circ} 03^{\prime}$ E., 1,580-1,620 fathoms, 3 living; $33^{\circ} 50^{\prime}$ S., $16^{\circ} 30^{\prime}$ E., $\mathrm{I}, 480-1,660$ fathoms, 6 living, 5 valves; $34^{\circ} 05^{\prime}$ S., $16^{\circ} 5^{\circ} 8^{\prime}$ E., I, $470-\mathrm{I}, 49^{\circ}$ fathoms, 34 living, 4 valves; $34^{\circ} 36^{\prime}$ S., 17° oo' E., $1,500-\mathrm{r}, 76 \mathrm{o}$ fathoms, 2 living, one valve (S. Afr. Mus. A9727, A9739, A9750, A9766, A9786, A98ı6, A9850, A9879; F. H. Talbot coll.).

Remarks. In juveniles up to about 10 mm . long the obliquity of the shell is not so noticeable as in larger shells; and the lower margin of the hinge is not so narrowly separated from the ligament pit.

Assigning a specific name to these shells is difficult. A valve superimposed on Smith's figure of straminea agrees exactly in shape. The number of teeth is 'about 12'. Smith did not mention whether the margin was internally crenulate, but presumably it was not (he was dubious about this as a specific character: p. 257) : he gave no internal view of the shell.
L. straminea was taken between Kerguelen and Heard Islands at only i50 fathoms; nevertheless the present shells may be conspecific.

Ungulinidae

Thyasira investigatoris (Smith)
Cryptodon investigatoris Smith, 1895, p. 13, pl. 2, figs. 6, $6 a ; 1897$, Moll. pl. 3, figs. $2-2 b$.
Thyasira investigatoris (Smith) Thiele \& Jaeckel, 1931, p. 218.
$33^{\circ} 50^{\prime}$ S., $17^{\circ} 2 I^{\prime}$ E., 600 fathoms, 1 right valve (S. Afr. Mus. A9708, F. H. Talbot coll.).

Previously taken (one specimen) by the Pieter Faure off Cape Point in 720-80o fathoms.

Semelidae

Abra longicallus (Scacchi)
Abra longicallis [sic] Sars, 1878, p. 74, pl. 6, figs. 3 a-c; pl. 20, fig. 4 .
Syndesmya longicallus Scacchi, Dautzenberg, 1927, p. 333.
Agreeing with Sars's description and figures. Length 13 , alt. 9 mm . Up to 25 mm . (Sars).
$33^{\circ} 50^{\prime}$ S., $17^{\circ} 2 I^{\prime}$ E., 600 fathoms, r living, 2 dead; $34^{\circ} 26^{\prime}$ S., 17° oo' E., r, $500-\mathrm{I}, 76 \mathrm{f}$ fathoms, I living (S. Afr. Mus. A9709, Ag889; coll. F. H. Talbot, Aug. and Dec. 1959).

Distribution. Arctic and North Atlantic, Mediterranean, Canaries, Azores; Gulf of Mexico; 20-2,435 fathoms (Jeffreys).

Verticordiidae
Halicardia flexuosa (Verrill \& Smith)
Halicordia [sic] fexuosa (Verrill \& Smith), Tomlin, 1937, p. 23, fig. I (references).
$33^{\circ} 50^{\prime}$ S., $17^{\circ} 21^{\prime}$ E., 6oo fathoms, I living (S. Afr. Mus. A9707, F. H. Talbot coll.).

The Pieter Faure took 2 dead specimens off Cape Point in $460-650$ fathoms.

Cuspidariidae

Cuspidaria spp.
Until better material is obtained it is not advisable to attach definite names to these specimens.
$33^{\circ} 50^{\prime}$ S., ${ }^{1} 7^{\circ} 21^{\prime}$ E., 600 fachoms, I living (S. Afr. Mus. A97io, F. H. Talbot coll.).

I $3 \times 7.5 \times 6 \mathrm{~mm}$. Similar in shape to the Atlantic claviculata Dall and congenita Smith, but has no 'clavicle'; and to the South Australian meridionalis Smith.
$34^{\circ} 37^{\prime}$ S., $17^{\circ} 03^{\prime}$ E., $\mathrm{I}, 5^{80-1,620}$ fathoms, 2 right valves (one of them broken) ; $34^{\circ} 36^{\prime}$ S., 17° oo' E., 1,500-1,760 fathoms, one broken left valve (S. Afr. Mus. A9787 and A9878, F. H. Talbot coll.).

The complete right valve is $40 \times 25 \mathrm{~mm}$., the broken left valve is at least 30 mm . alt. Compare: maxima Dautzenberg \& Fischer from the Azores, I, 850 metres. Surface smooth, growth-lines only. Posterior lateral tooth in right valve forms a thickened, sausage-like ridge; the ligament pit is scarcely visible as it lies in a plane almost perpendicular to the sagittal plane of the valve.

Summary

A collection of deep-sea mollusca from west of Cape Point, South Africa, in depths between 600 and $\mathrm{I}, 880$ fathoms is described. The collection comprises approximately 590 specimens of approximately 78 species including 25 new species.

Agknowledgments

This paper is part of my research work on South African Marine Mollusca carried out with the aid of a research grant from the South African Council for Scientific and Industrial Research, to whom thanks and acknowledgment are herewith made.

The deep-trawling was done by courtesy of the Director, Division of Sea Fisheries, Cape Town, to whom we are very grateful.

The Trustees of the South African Museum are grateful to the Council for Scientific and Industrial Research for the award of a grant for the publication of this paper.

References

Barnard, K. H. 1958. Contributions to the knowledge of South African Marine Mollusca. Part I. Gastropoda: Prosobranchiata: Toxoglossa. Ann. S. Afr. Mus. 44, 73-163. 30 textfigs., I pl.
Barnard, K. H. 1959. Idem. Part II. Rhachiglossa. Ann. S. Afr. Mus. 45, i-237, 52 text-figs.
Barnard, K. H. i960a. The rediscovery of Guivillea Watson. Fourn. Conch. 24, 398.
Barnard, K. H. 196ob. The genus Charitodoron Tomlin. Journ. Conch. 24, 402.
Barnard, K. H. ig6oc. New species of South African marine Gastropods. Fourn. Conch. 24, 438-442. 3 text-figs.
Barnard, K. H. ig63. Contributions to the knowledge of South African Marine Mollusca. Part III. Taenioglossa. Ann. S. Afr. Mus. 47, 1-199, 37 text-figs.
Barnard, K. H. [in press]. Idem. Part IV. Rhipidoglossa, Docoglossa, Tectibranchiata, Polyplacophora, Scaphopoda. Ann. S. Afr. Mus. 47 (2).
Barnard, K. H. [in press]. Idem. Part V. Lamellibranchiata. Ann. S. Afr. Mus. 47 (3).
Bergh, R. 1900. Nudibranchiate Gastropoda. Danish Ingolf Exped. 2 (3), 49, 5 pls.
Bergh, R. igo6. Ueber clado- und holohepatische nudibranchiate Gastropoden. Zool. Jahrb. 23, Abt. Syst. 739-742. i pl.
Chun, C. I910. Die Cephalopoden. Part I. Oegopsida. Wiss. Ergebn. 'Valdivia' 18, I-40I. pls. I-6i.
Clarke, A. H., Jr. 196ı. Abyssal Mollusks from the South Atlantic Ocean. Bull. Mus. Comp. Zool. Harv. 125, 345-387. 4 pls. (photos not good).
Dall, W. H. i88i. Reports on the Results of Dredging, under the Supervision of Alexander Agassiz, in the Gulf of Mexico, and in the Caribbean Sea, $1877-79$ by the United States Coast Survey Steamer 'Blake', Lieutenant-Commander C. D. Sigsbee, U.S.N., and Commander J. R. Bartlett, U.S.N., commanding. XV. Preliminary Report on the Mollusca. Bull. Mus. Comp. Zool. Harv. 9, 33-144.

Dall, W. H. 1889. Idem. XXIX. Report on the Mollusca. Part II. Gastropoda and Scaphoda. Bull. Mus. Comp. Zool. Harv. 18, 1-492. 31 pls.
Dautzenberg, P. ı889. Révision des Mollusques marins des Açores. Res. Camp. Sci. Monaco r, I-II2. 4 pls.
Dautzenberg, P. 1912. Mollusques marins. Mission Gruvel sur la côte occidentale d'Afrique (1909-1910). Ann Inst. ocean. 5 (3), i-III. pls. I-3.
Dautzenberg, P. 1927. Mollusques provenant des campagnes scientifiques du Prince Albert ier de Monaco dans l'Océan Atlantique et dans le Golfe de Gascogne. Res. Camp. Sci. Monaco 72, I-40I. 9 pls.
Jeffreys, J. G. 1879. On the Mollusca procured during the 'Lightning' and 'Porcupine' Expeditions, 1868-70. Part 2. Proc. zool. Soc. Lond., vol. pp. 553-588. pls. 45, 46.
Locard, A. 1897. Mollusques Testaces. I. Expéditions scientifiques du Travailleur et du Talisman pendant les années $1880-1883$. Paris. pp. vi, 516.22 pls.
Melvill, J. C., \& Standen, R. 1907 (issued separately). The Marine Mollusca of the Scottish National Antarctic Expedition. Trans. Roy. Soc. Edinb. 46, 1908, 1 19-157. I pl.
Pelseneer, P. 1888. Report on the Anatomy of the Deep-Sea Mollusca collected by H.M.S. Challenger in the years 1873-76. Challenger Rep. 27, 1-42, pls. 1-4.
Powell, A. W. B. 195I. Antarctic and Subantarctic Mollusca: Pelecypoda and Gastropoda. Discovery Rep. 26, 47-196. pls. 5-10, text-figs. A-N.
Sars, G. O. 1878. Mollusca Regionis Arcticae Norvegiae. pp. 1-466. 32 pls. Christiana.
Schepman, M. M. 1908. The Prosobranchia of the Siboga Expedition. Part I. Rhipidoglossa and Docoglossa. Siboga Exp. 49, 1-107. pls. 1-9.
Schepman, M. M. igii. Idem. Part IV. Rachiglossa. Siboga Exp. 49, 247-363. pls. 18-24.
Smith, E. A. 1885 . Report on the Lamellibranchiata collected by H.M.S. Challenger during the years 1873-76. Rep. Sci. Res. Challenger 13, 1-341. 25 pls.
Smith, E. A. i895. Report upon the Mollusca dredged in the Bay of Bengal and the Arabian Sea during 1893-94. Ann. Mag. Nat. Hist. (6) 16, 1-19. 2 pls.
Smith, E. A. 1899. On Mollusca from the Bay of Bengal and the Arabian Sea. Ann. Mag. Nat. Hist. (7) 4, 237-251.
Smith, E. A. 1897-1 gog. Illustrations of the Zoology of the R.I.M.S. Investigator. Mollusca. pls. 1-23. Calcutta.
South African Museum. 196i. Report for the year ended 3i March 196o. Cape Town.
Sowerby, G. B. 1903. Mollusca of South Africa. Mar. Invest. S. Afr. 2, 213-232. pls. 3-5.
Thiele, J. 1903. Die beschalten Gastropoden der deutschen Tiefsee-Expedition 1898-1899. B. Anatomisch-systematischen Untersuchungen einiger Gastropoden. Wiss. Ergebn. Valdivia 7, 148-180. pls. 6-9 (1-4).
Thiele J. 1925. Gastropoden der Deutschen Tiefsee-Expedition. II Teil. Wiss. Ergebn. Valdivia 17, 37-382. Text-figs., pls. 13-46 (i-34).
Thiele, J. 1929. Handbuch der systematischen Weichtierkunde. I. Part I. Loricata: Prosobranchia. i-vi, i-376. Text-figs. Jena: Fischer.
Thiele, J., \& Jaeckel, S. 193i. Muscheln der Deutschen Tiefsee-Expedition. Wiss. Ergebn. 'Valdivia' 21, 16i-268. pls. $\mathrm{I}-5$ (6-10).
Tomlin, J. R. le B. 1927. Reports on the marine Mollusca in the collections of the South African Museum. II. Abyssochrysidae, Oöcorythidae. Ann. S. Afr. Mus. 25, 77-83. Text-figs.
Tomlin, J. R. le B. 1931. Idem. V. Scaphopoda. Ann. S. Afr. Mus. 29, 337-340.
Tomlin, J. R. le B. 1937. Idem. X. Verticordiidae. Ann. S. Afr. Mus. 32, 23, 24. i text-fig.
Verrill, A. E. 1885 . Third Catalogue of Mollusca recently added to the fauna of the New England coast and the adjacent parts of the Atlantic, consisting mostly of deep-sea species, with notes on others previously recorded. Trans. Connect. Ac. Arts. Sci. 6, 396-452. pls. 42-44.
Watson, R. B. 1879. Mollusca of H.M.S. Challenger Expedition. 2. Solenoconchia. 3. Trochidae. Fourn. Linn. Soc. Lond. 14, 586-606.
Watson, R. B. 1882. Idem. Part XII. Journ. Lin. Soc. Lond. 16, 324-343.
Watson, R. B. 1886. Report on the Scaphopoda and Gasteropoda collected by H.M.S. Challenger during the years $1873-1876$. Challenger Rep. 15, i-v, $1-756$. pls. $50+3$.
Wood-Mason, J., \& Alcock, A. ı89ı. Natural History notes from H.M. Indian Marine Survey Steamer. Mollusca. Ann. Mag. Nat. Hist. 8, 443-448.
[continued from inside front cover
References thus appear as follows:
Augener, H. i913. Polychaeta. In Michaelsen, W., ed. Beiträge zur Kenntnis der Meeresfauna Westafrikas. 2, 67-625. Hamburg: Friederichsen.
Ekman, S. 1953. Zoogeography of the sea. London: Sidgwick \& Jackson.
Hartman, O. 1948a. The polychaetous annelids of Alaska. Pacif. Sci. 8, i-58.
Hartman, O. 1948b. The marine annelids erected by Kinberg. Ark. Zool. 42, 1-137.
Izuka, A. 1912. The errantiate Polychaeta of Japan. 7. Coll. Sci. Tokyo. 30, art. 2, I-262.
Monro, C. C. A. 1933. Notes on a collection of Polychaeta from South Africa. Ann. Mag. nat. Hist. (Io), II, 487-509.
SYNONYMY. Arrangement according to Schenk, E. T. \& McMaster, J. H.: Procedure in taxonomy. 2nd ed. Stanford, Stanford university press, 1948. Bibliographic references modified.
'I. Synonymy arranged according to chronology of names.-All published scientific names by which a species has been previously designated (subsequent to 1758) are listed in chronological order, with bibliographical references to all descriptions or descriptive citations following in chronological order after each name. . . .
B. Form of bibliographic references to synonymic names.-The first reference following any name in the synonymy should be to the earliest citation of that name. This should be followed by references to all subsequent citations of the same name, arranged in chronological order. . . .'

Bibliographical references modified to consist of author's name, date of citation, pagination and illustrations (plates and figures).

Example:-

Eulalia (Steggoa) capensis Schmarda
Eulalis capensis Schmarda 186ı, p. 86, pl. 29, fig. 231. Willey 1904, p. 259. Eulalia viridis var. capensis McIntosh 1903, p. 34. Day 1953, p. 30.
Eulalia viridis (non Muller) Ehlers 1913, p. 455. Day 1934, p. 30.

[^0]: *Not to be confused with South African Museum registration numbers which have the prefix A.... and four numerals. For this reason, in the descriptions and notes only the localities are given, not the station number.

[^1]: *For the last-mentioned species, from Kerguelen, Powell (1951) proposed the generic name Falsimohnia.

